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Developing Effective Strategies and Performance Metrics for 

Automatic Target Recognition 
(Work Done at the University of South Alabama) 

 
Abstract 

The final report that summarizes the work performed at University of South Alabama (USA). 
Four different target tracking algorithms and two data fusion algorithms have been developed for 
single/multiple target detection and tracking purposes. Each tracking algorithm utilizes various 
properties of targets and image frames of a given sequence. The data fusion algorithms employ 
complementary features of two or more of the above mentioned algorithms. Thus, the data fusion 
technique has been found to yield the best performance.  
 
The performance of the above mentioned algorithms was evaluated using two approaches - 
evaluation based on the input scene data complexity, and evaluation based on the correlation 
output produced by each algorithm. We developed two new performance metrics to evaluate the 
effect of input plane data complexity on the performance of the algorithms. To evaluate the 
output produced by each of the aforementioned algorithms, we used four performance metrics, 
such as peak-to-sidelobe ratio, peak-to-correlation energy, peak-to-clutter ratio, and Fisher ratio. 
 
Finally, we investigated the problem of target detection in the initial frame of a video sequence 
using two techniques, namely feature vectors and multilevel data fusion, assuming that no target 
information is known a priori. 
 
 
1. Multiple Target Tracking Algorithms 
 
We developed four new multiple target tracking algorithms which are based on fringe-adjusted 
joint transform correlation (FJTC), intensity variation function (IVF) and template matching 
(TM) techniques. The performance of these algorithms were tested using 50 real life forward 
looking infrared (FLIR) image sequences supplied by the Army Missile Command (AMCOM). 
 
 
1.1 FJTC, IVF and TM (FJTC-IVF-TM) Based Multiple Target Tracking 

In this section, we introduce FJTC-IVF-TM based multiple target tracking algorithm which 
includes frame preprocessing, motion estimation and target tracking. In the initial stage, we 
utilized the FJTC technique [1]. Using FJTC results, the current frame of the image sequence is 
recovered after global motion compensation. For the tracking algorithm, IVF and TM techniques 
have been used. The IVF based target tracking approach primarily utilizes target intensity 
information associated with the previous frame and the current frame. Initially, a target reference 
window and a subframe are segmented from consecutive frames. Then the IVF is generated by 
sliding target window inside the frame or the subframe, which yields maximum peak value for a 
match between the intensity variations of the known reference target and the unknown candidate 
target window in the frame or the subframe as shown in Fig.1. 
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Fig. 1. Intensity variation function based target detection in a sequence (lwir_1913), a) Reference target window 
segmentation from previous frame, b) Subframe segmentation from the subsequent frame, c) IVF result , d) Highest 

peak produced in the IVF output plane. 
 
From Fig. 1, it is evident that the candidate target coordinates can be obtained from the 
maximum peak value. When the candidate target coordinates are less reliable, the TM technique 
is triggered. It generates the highest peak value based on the similarity between reference target 
and candidate target by sliding target window inside the subframe [2]. Using the new target 
coordinates, target model is updated for target detection in the next frame as well as the tracking 
process. The aforementioned steps are repeated until all frames of the sequence are processed. 
The target tracking results obtained using the FJTC-IVF-TM algorithm is shown in Appendix A. 
 

1.2 Normalized Crosscorrelation, IVF and TM (CC-IVF-TM) Based Multiple Target 
Tracking  

In this algorithm, we proposed a new frame preprocessing algorithm using regional segmentation 
and normalized crosscorrelation based template modeling technique. The regional segmentation 
approach alleviates the effects of several detrimental factors such as smoke motion and effects of 
background while reducing the computation time. In addition, the template modeling technique 
enhances processing speed and increases the accuracy of the tracking algorithm.  
 
For estimating the shift distance, template modeling algorithm is used which yields the highest 
value corresponding to the correlation coefficients between known reference image and 
unknown input image. The correlation coefficients provide a measure of association of the 
relationship between two images. It is defined as the ratio of the observed covariance of two 
standardized variables, divided by the highest possible covariance. When the observed 
covariance corresponds to the possible covariance value, the correlation operation generates a 

 

        
                (a)    (b) 
            

      
                 (c)    (d)            
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value of 1, indicating a perfect match between the two images. In contrast, a correlation value of 
0 indicates a random relationship between the two images.  
 
The frame preprocessing is achieved by determining the highest correlation coordinate between 
the reference image and template image obtained from the subframe. Using the frame 
preprocessing, the current frame of the image sequence is recovered. For tracking, we used the 
IVF-TM tracking algorithm explained earlier in Section 1.1. The multiple target tracking results 
corresponding to the CC-IVF-TM algorithm is depicted in Appendix A. 
 
1.3. Normalized Crosscorrelation, FJTC, and TM (CC-FJTC-TM) Based Multiple Target 
Tracking  
In this tracking algorithm, we used the normalized crosscorrelation based preprocessing 
technique explained in Subsection 1.2. For tracking purposes, we used the FJTC and template 
modeling techniques. The FJTC technique has been found to yield excellent correlation 
discrimination between a known reference and an unknown target in an input scene. After 
preprocessing and applying the FJTC operation, a shift vector is obtained using the difference 
between the reference correlation peak and the new correlation peak coordinates as shown in Fig 
2. The shift vector is used to calculate new target coordinates.  

                              .  
Fig.2 FJTC based target detection algorithm scheme. 
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When the FJTC algorithm yields poor results due to blending or background clutter problems, 
template modeling technique is employed as a compensation technique.  Thereafter, the target 
model is updated and is used as a reference for the subsequent frame. This procedure is repeated 
until all frames of the sequence are processed. The target tracking results corresponding to the 
CC-FJTC-TM algorithm is included in Appendix A. 
 
1.4 Modified SDF based Invariant FJTC (FJTC-MSDF-FJTC) Target Tracking  
This is a vigorous approach for real-time target tracking in FLIR imagery in the presence of 
various distortions in target features and background properties. The proposed approach utilizes 
FJTC technique for real-time estimation of target motion and utilizes a concept similar to the 
synthetic discriminant function (SDF) filter to update the reference target model in order to 
alleviate the effects of noise, 3D distortions, and hazards generated by bad frames yielding 
significantly improved overall tracking performance [3]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3. FJTC Tracking Algorithm 
 
The FJTC technique is used for correlation due to its low sensitivity to scale and rotation 
variations, small correlation side-lobes, and low zero-order peak. Moreover, FJTC can be easily 
implemented and is very suitable for real-time applications. Figure 3 shows the block diagram of 
the proposed FJTC tracking system.  
 
A FLIR image generally smoothes out object edges and corners, and thus leads to a reduction of 
distinct features. The solution is to apply image preprocessing to both the input and reference 
images before the application of every FJTC operation. Image preprocessing involves various 
procedures such as edge enhancement and local intensity normalization. In the proposed FJTC 
algorithm, image segmentation technique is used to improve target tracking with conventional 
FJTC. In this method, several steps of motion preprocessing are used to effectively handle 
complicated scenarios such as multiple independently moving objects, distortions due to skew, 
rotation as well as other artifacts. 
 
In addition, a filter is used to preserve the information available from the preceding target 
reference images in order to reduce the effects of noise and hazard associated with bad frames, as 
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well as other artifacts as shown in Fig. 4. The results corresponding to the modified SDF based 
invariant FJTC target tracking algorithm are illustrated in Appendix A (Algorithm #4). Finally 
each tracking algorithm results are summarized in Appendix B. 
 

 

 
 

Fig.4 Modified SDF model based reference target update scheme. 
 

2. Data/Decision Fusion 
We proposed a novel data/decision fusion algorithm for target tracking in FLIR image 
sequences. The algorithm allows the fusion of complementary preprocessing and tracking 
algorithms. We identified three modes that contribute to the failure of the tracking system: (1) 
the motion failure mode, (2) the tracking failure mode, and (3) the reference image distortion 
induced failure mode. The strategy in the design of the proposed algorithm is to prevent these 
failure modes from developing tracking failures. The overall performance of the algorithm is 
guaranteed to be much better than any of the individual tracking algorithms used in the fusion. 
One important aspect of the proposed algorithm is its recoverability property i.e., the ability to 
recover following a failure at a certain frame. 
 
The flowchart shown in Fig. 5 summarizes the basic building blocks of the proposed algorithm. 
In its initial appearance, the location of the target is determined from the ground truth file. The 
tracking in the subsequent frames are done automatically without any assistance from the ground 
truth file.  
 
2.1 Ego-motion Compensation Component 
The first component of the proposed algorithm is the ego-motion compensation (EMC). 
Different and complementary ego-motion compensation algorithms are used to generate initial 
locations for the target. In the flowchart of Fig. 5, we assume that two EMC algorithms are used 
and the two initial target locations are referred to as (x1,y1) and (x2, y2), respectively. For 
demonstration purposes, we assume that the compensation is achieved by the registration of the 
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SDF 
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Image 

Reference 
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large white box of the previous frame as shown in Fig. 6. We observe that EMC algorithm #1 
succeeded in compensating the ego-motion, while algorithm #2 failed. For the subsequent target 
tracking to be successful, at least one EMC algorithm should succeed in placing the target within 
the operational limits of the tracking algorithm. The failure of all EMC algorithms will result in 
unrecoverable tracking error.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Flowchart of proposed decision-fusion algorithm for correlation-based target tracking in FLIR imagery. 
 

EMC
algorithm #1

EMC
algorithm #2

Ego-Motion
Compensation

(EMC)

Next frame

TT
algorithm

#1

TT
algorithm

#1

TT
algorithm

#2

TT
algorithm

#2

(x1,y1) (x2,y2)Initial target locations

Target Tracking
(TT)

Tentative target
locations (x11,y11) (x21,y21) (x12,y12) (x22,y22)

Template
Matching (TM)

ST11 ST21 ST12 ST22

Select the target with minimum error margin

Weighted Composite
Reference Function

(WCRF)

(x_final,y_final)

Update Target
Model

initial frame?

Segmented Targets

Final target location

Image sequence

Yes

No

FDTFinal DetectedTarget



 10

 
Fig. 6 Example demonstrating the initial target locations generated by the ego-motion compensation algorithms, 

(x1,y1) and (x2,y2), and tentative target locations generated by the tracking algorithms,  (x11,y11),  (x12, y12), (x21,y21) 
and (x22,y22). 

 
 
2.2 Target Tracking Component 
The next component of the proposed algorithm is target tracking (TT). In the vicinity of the 
initial locations generated by EMC algorithms, different TT algorithms are used to pinpoint the 
target by generating tentative locations.  In the flowchart of Fig. 5, we assume that two TT 
algorithms are used. The number of tentative target locations is the product of the number of 
EMC algorithms times the number of TT algorithms. Consequently, in the example of Fig. 6, 
four tentative target locations, referred to as (x11,y11),  (x12, y12), (x21,y21) and (x22,y22), are 
generated.  The correct location of the target is (x11,y11) and the other locations are false alarms.  
 
2.3 Template Matching Component 
This component selects the final target location from the tentative locations determined in the 
preceding steps. This is achieved by template matching. Segmented targets (STij) from the 
tentative locations are compared with a reference image for the target, called the Weighted 
Composite Reference Function (WCRF), which is discussed in next subsection. An Error Margin 
(EMij) is computed for every STij, where EMij reflects the dissimilarity between STij and the 
reference image WCRF.  The STij with the lowest EMij is selected as the Final Detected Target 
(FDT). In the example of Fig. 6, EM11 has the lowest EM. Therefore, (x11,y11) is selected as the 
final target location, and FDT is selected as ST11.  
 
2.4 Update Target Model 
The last component of the proposed algorithm is updating the target model. A Weighted 
Composite Reference Function (WCRF) is used to update the target model. The WCRF is 
generated by summing the multiplication of FDT images of the target used in the previous 
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frames with a set of weighted coefficients. By allowing WCRF to preserve its history, we 
effectively alleviate the distortion of the reference image. 
 
2.5 Data/Decision Fusion Results 
The experiments performed on the AMCOM FLIR data set verify the robustness of the proposed 
data/decision fusion algorithm. By using different and complementary ego-motion compensation 
and tracking algorithms, we have improved the chances of detecting the target. The template 
matching step, which selects the best match to the target model from the possible locations, 
insures the rejection of false alarm related errors. The WCRF method used for updating the target 
model alleviates the distortion of the reference image, and at the same time, it allows the target 
model to update its shape, size and orientation from frame to frame. It also enhances the 
probability of recovering after a failure at a certain frame. The multiple target tracking results 
obtained using the data/decision fusion algorithm are shown in Appendix C. Summarized fusion 
results are also shown in Appendix D. In the first experiment we fused CC-IVF-TM and FJTC-
MSDF-FJTC tracking algorithms. The fusion algorithms performed better than the individual 
algorithms used in the fusion. In the second experiment, we obtained better results by fusing four 
algorithms: the two algorithms used in the first experiment plus two additional algorithms, FJTC-
IVF-TM and CC-FJTC-TM. 
 

3. Performance Metrics 
FLIR image sequences are very complex in terms of the target signature and background, which 
makes the tracking very difficult. We observed that the input data complexity directly affects the 
performance of various tracking algorithms. On the other hand, the performance of the tracking 
algorithms can be evaluated by analyzing the output results.  
 
3.1 Effect of Data on the Performance of an Algorithm 
Input data complexity directly influences the amount of useful information available in the target 
signature. We developed two new performance metrics to measure the effect of input data on the 
performance of the target tracking algorithms which include local intensity ratio and local 
contrast ratio. The local intensity ratio (LIR) corresponds to the intensity variation between the 
target and the neighboring background in the infrared input image. The local contrast ratio 
(LCR) corresponds to the contrast variation between the target and the neighboring background 
in the infrared input image. Fig. 7 shows the data complexity in terms of LIR and LCR for all 
frames of a test sequence (L1415), which contains a single target of interest. Fig. 8 shows the 
same parameters for a multi-target image sequence (L1817S1).   
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Fig. 7 LIR and LCR results for sequence (L1415), a) first frame, b) last frame, c) LIR result, and d) LCR result with 
100 % tracking. 

 
 

After testing the LIR and LCR metrics with all sequences, we found a threshold value of 1.05 for 
LIR and 1.0 for LCR. If LIR is above 1.05 and LCR is above 1, it is highly likely that a tracking 
algorithm will successfully track the target. If LIR is close to 1.05 and LCR is close to 1, a 
tracking algorithm may or may not detect and track the target. If the LCR is below 1.05 and LCR 
is below 1, it is highly likely that a tracking algorithm will fail to detect and track the target. 
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Fig. 8 LIR and LCR results for sequence (L1817S1): a) first frame, b) LIR result, c) frame # 63 , and d) LCR result. 
 

 
3.2 Metrics for Evaluating Performance of a Tracking Algorithm 
The similarity between a target and background, blended target, rotation and scale variations of 
the target, noise and clutter present in FLIR images pose various challenges in target detection 
and tracking. We investigated the performance of the tracking algorithms using various 
performance metrics for real life FLIR image sequences. We choose three metrics to evaluate the 
tracking algorithms which are peak-to-sidelobe ratio (PSR), peak-to-correlation energy (PCE) 
and Fisher ratio (FR) [4,5]. These performance metrics are used to estimate the reliability of the 
tracking algorithm. For illustration purposes, we report herein the performance of the CC-FJTC-
TM algorithm using the aforementioned metrics. 
 
The PSR determines the sharpness of the peak by comparing the highest peak intensity with a 
side-lobe peak intensity. The PCE calculates the ratio between the correlation peak energy and 
the total energy of the correlation plane. The higher the value of PCE, the sharper the correlation 
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peak. Fisher ratio is used to measure the performance of an algorithm with respect to the 
distortions associated with a target. It is utilized to evaluate the performance of an algorithm for 
distortion invariant target detection. When the FR is close to zero, it indicates that the target in 
the previous and current frames is same. When FR is higher than zero, it implies that the targets 
are different or there are significant variations between the target in the previous frame and the 
current frame. Figures 9, 10 and 11 show the performance results of CC-FJTC-TM for two 
sequences (L1415 and L1871S1), respectively. 
 
To determine the thresholds for each of these performance metrics, we considered the tracking 
results for all sequences and determined the threshold for PSR, PCE and FR as 15, 0.002 and 0.5, 
respectively. For the first sequence (L1415), PSR and PCE are above their threshold and FR is 
below the threshold for all frames as shown in Figs. 9(a), 9(b) and 9(c), respectively. Therefore, 
the CC-FJTC-TM algorithm tracks the target in this sequence with 100% accuracy. 
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Fig. 9 (a) PSR for L1415, (b) PCE for L1415 and (c) FR for L1415. 

 
 (a) 

 
 (b) 

 
 (c) 

 
Fig. 10 (a) PSR results for target-1 in sequence L1817S1, (b) PCE results, and  (c) FR results. 
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(a) 

 
 (b) 

 
 (c) 

Fig. 11 (a) PSR results for target-2 in sequence L1817S1, (b) PCE results, and  (c) FR results. 
 
 

The performances metrics for the second sequence (L1817S1) is shown in Figs. 10 and 11. From 
Fig. 10, it is evident that the PSR and PCE values for Target #1 change dramatically i.e., the 
values drop lower than the threshold at around frame number 60. This implies that this algorithm 
fails to track Target #1 at around frame number 60. If we consider Target #2 (Figure 11) in the 
same sequence, it is evident that the PCE and PSR values are above the threshold and FR is close 
to 0, implying that the algorithm can detect and track Target #2 with 100% accuracy. 
 
 
4. Target Detection 
We investigated two algorithms for target detection in the initial frame of a sequence using (i) 
multilevel data fusion technique assuming no a priori information is available about the target, 
and (ii) Law’s Texture Energy Measures assuming the number of targets present in the image are 
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known a priori. The developed algorithms utilize target intensity, contrast, as well as other 
properties to detect brighter hot spots which correspond to possible targets.  
 
4.1 Target Detection Using Multilevel Data Fusion 
This technique was originally introduced by Borghys et al. [6]. It is based on constructing co-
occurrence matrix locally for the entire input image to calculate features such as energy, contrast, 
maximum probability, entropy, homogeneity and variance. These features are then fused together 
based on their coefficients obtained through training. However, for some cases, we found that the 
final output may split a probable single target into two parts if the existing technique is used. 
This may complicate the target detection process. To eliminate this limitation, an average 
filtering approach is used for the final output to join the small pieces that appear closer to each 
other. This enhances the detection accuracy and eliminates false alarms. Thereafter, a threshold 
operation is applied to reject unwanted regions. Two examples of target detection in the first 
frame using the above mentioned technique are depicted in Figs. 12 and 13, respectively. 
 

 

 
Fig. 12 Target detection using multilevel data fusion in sequence L1608 
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Fig. 13. Target detection using multilevel data fusion in sequence L2312. 

 
This technique shows some promising results but it requires a lot of computation as a co-
occurrence matrix needs to be constructed for every sub-region of the image. After further 
testing, we obtained similar results by applying a combination of a standard deviation filter and 
an average filter to the input image. This technique requires less computation time and does not 
need any training when compared to the previous technique. Figures 14 and 15 show the results 
obtained for the same sequence using our enhanced algorithm.  
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Fig. 14. Target detection using standard deviation and multilevel data fusion in sequence L1608. 

 
 
 

 

 
Fig. 15. Target detection using standard deviation and multilevel data fusion in sequence L2312 

 
4.2 Target Detection Using Law’s Texture Energy Measures 
In this work, to detect targets in the initial frame, morphological operators and Law’s texture 
energy measures [7-10] are used. Before starting any processing on the images, the gray levels of 
each image are rescaled between 0 to 255. At first, the following steps are followed to find the 
local maxima: 
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1) Morphological dilation with a centered horizontal element H of width 3 is applied so that 
small objects become more perceptible. 

2) Difference between dilated image and original image yields the edge. 
3) Addition of the original image with the image obtained from step 2, generates an enhanced 

version of the original image. 
4) For further enhancement, the image from step 3 is again dilated with the same horizontal 

element H of width 3. 
5)  Subtraction of the original image from the image at step 5 yields broad or wide edges. 
6) Average filtering of the image at step 5 fills the blank space enclosed by the edge of any 

object. 
7) A threshold is then applied to the image at step 6 to eliminate unwanted smaller regions. 
8) After the application of threshold, average filtering is reapplied to connect adjacent parts of 

an object if there are any. 
 
The threshold value is chosen adaptively depending on the ratio between the maximum intensity 
of an image and mean intensity of the same image. The resulting images, obtained after each of 
the above steps, are shown in Figs. 16 through 23, respectively. 
 

 
 
       Fig. 16. Original rescaled      Fig. 17. Output of step 1.   Fig. 18 Output of step 2.     Fig. 19 Output of step 3. 
                 image. 
 

 
 

Fig. 20 Output of step 4.  Fig. 21 Output of step 5.   Fig. 22 Output of step 6.  Fig. 23 Output of step 8. 
 
Thereafter, Law’s texture energy measures are applied to find the possible targets among the 
local maxima shown in Fig. 23. The target detection algorithm then searches for any non-zero 
values in the image resulting from step 8. All adjacent non-zero pixels are considered as a single 
object. After applying the search operation, the resulting detected regions containing both 
potential targets and non-target objects are obtained as shown in Fig. 24.  
 
Now the challenge is to discriminate true targets from non-target objects. Texture may be used to 
distinguish between true targets or target like background in FLIR Imagery. Law’s texture 
energy measures are basically feature extraction schemes based on gradient operators. This 
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scheme uses 5 masks which are obtained by convolving five 1-dimentional vectors, each 
representing level, edge, spot, wave and ripple, respectively, as shown below: 

• Level L5 = [ 1    4   6   4   1]  
• Edge E5 = [-1  -2   0   2   1]  
• Spot S5 = [-1   0    2   0  -1]  
• Wave W5= [-1   2   0   -2   1]   
• Ripple  R5= [ 1  -4    6  -4   1] 
 

The following 5 masks are then applied to the image to eliminate the false positives from Fig. 24. 
The five output images of the five masks are shown in Figs. 25 to 29, respectively.  
 
(E5′)L5 = [-1    -4    -6    -4    -1       (R5′)L5 = [ 1      4      6       4      1     (S5′)E5 = [1     2     0    -2    -1 
                  -2    -8   -12    -8    -2      -4   -16   -24   -16    -4        0     0     0     0     0 
                    0     0      0     0     0        6    24    36     24     6       -2    -4     0     4     2 
                    2     8    12     8     2      -4   -16   -24   -16    -4        0     0     0     0     0 
                    1     4     6      4     1];          1      4      6      4      1];        1     2     0    -2    -1]; 
(S5′)S5 = [1     0    -2     0     1       (R5′)R5 = [ 1      -4      6       -4      1      
                  0     0     0     0     0   -4      16   -24      16    -4         
                 -2     0     4     0    -2    6     -24     36     -24     6        
                  0     0     0     0     0   -4      16   -24       16   -4         
                  1     0    -2     0     1];      1       -4      6        -4     1].        
 

 
 
   Fig. 24 Candidate targets’  Fig. 25 Output of mask (E5′)L5   Fig. 26 Output of mask (R5′)L5   
              positions 
 

 
 
Fig. 27 Output of mask (S5′)E5   Fig. 28 Output of mask (S5′)S5      Fig. 29 Output of mask (R5′)R5    
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After calculating the above features for the detected objects’ region, true targets are separated 
from non-target objects. The final detection result of the true targets, after eliminating the false 
target like background using Law’s Texture Energy Measures, is shown in Fig. 30. It is found 
that the texture feature values are much higher for potential targets than non-targets. The results 
of this algorithm for target detection in the frame, where the target appears first, are shown in 
Appendix E. 
 

 
 

Fig. 30 Detected true targets using Law’s Texture Energy Measures. 
 
 
5. Conclusion 
In this report, we presented an overview of the works that was performed during the stated 
period. The USA segment of the research work lead to the development of four target tracking 
algorithms and two data/decision fusion algorithms. The performance of these algorithms has 
been tested using real life FLIR image sequences supplied by AMCOM. The publications 
resulted from this project are listed in Appendix F. 
 
The main characteristic of the FJTC-IVF-TM algorithm is that it uses target intensity and shape 
information for detection and tracking. Normalized cross-correlation techniques (CC-IVF-TM 
and CC-FJTC-TM) further enhances the robustness of the tracking algorithm. The modified SDF 
based invariant FJTC (FJTC-MSDF-FJTC) target tracking algorithm efficiently utilizes scale, 
rotation as well as neighborhood information for efficient target tracking. The data/decision 
fusion algorithm combines two or more of the above algorithms to ensure much better detection 
and tracking performance.  
 
The impact of input data complexity and correlation output results are analyzed and metrics are 
developed to quantify the tracking performance for both input data (image sequences) and results 
generated by the various algorithms. In the above mentioned tracking techniques, we assume that 
the target is known in the first frame. To detect the target in the first frame without any a priori 
knowledge is a challenging task. In this project, we also investigated two algorithms for 
detecting target(s) in the initial frame of a FLIR sequence. 
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Appendix A: Target Detection and Tracking Results Generated by the  

Algorithms Developed at USA  
 
Algorithm #1: FJTC-IVF-TM algorithm 
Algorithm #2: CC-IVF-TM algorithm 
Algorithm #3: CC-FJTC-TM algorithm 
Algorithm #4: FJTC-MSDF-FJTC algorithm 

 
Seq no. Sequence name Total frames Targets Tracking Results 

  
        Alg#1 Alg#2 Alg#3 Alg#4 
1 L14_15 281 tar 1 - mantruck 100% 100% 100% 100% 
2 L15_20 215 tar 1 - tank 100% 100% 100% 100% 

tar 1 - tank1 100% 6% 100% 100% 3 L15_NS 320 
tar 2 - truck1 25% 65% 100% 100% 

4 L16_04 400 tar 1 - tank1 100% 0% 100% 100% 
tar 1 - tank1 0% 0% 25% 2% 5 L16_07 410 
tar 2 - mantruck 100% 45% 100% 100% 
tar 1 - m60 100% 100% 100% 100% 
tar 2 - apc1 100% 100% 100% 100% 

6 L16_08 290 

tar 3 - mantruck? 76% 70% 76% 76% 
tar 1 - m60 100% 100% 100% 100% 
tar 2 - apc 100% 100% 100% 100% 

7 L16_18 300 

tar 3 - truck 100% 100% 100% 100% 
tar 1 - bradley 100% 100% 100% 100% 8 L17_01 388 
tar 2 - pickup 100% 100% 100% 100% 
tar 1 - mantruck 45% 100% 100% 100% 
tar 2 - pickup 20% 100% 100% 100% 
tar 3 - bradley 20% 2% 50% 67% 
tar 4 - mantruck 0% 0% 100% 1% 

9 L17_02 698 

tar 5 - tank 0% 100% 100% 100% 
tar 1 - target 0% 100% 100% 0% 10 L17_20 778 
tar 2 - m60 0% 0% 100% 100% 

11 L18_03 450 tar 1 - bradley 1% 1% 100% 100% 
tar 1 - tank1 100% 50% 100% 100% 12 L18_05 779 
tar 2 - apc1 60% 100% 100% 100% 
tar 3 - m60 0% 0% 1% 2% 

   
tar 4 - tank1 0% 0% 1% 100% 

13 L18_07 260 tar 1 - bradley 10% 7% 100% 100% 
tar 1 - tank1 80% 100% 100% 53% 
tar 2 - bradley 100% 100% 100% 100% 

14 L18_12 300 

tar 3 - m60 100% 100% 100% 100% 
tar 1 - tank1 100% 80% 100% 100% 
tar 2 - m60 100% 100% 100% 100% 

15 L18_13 326 

tar 3 - apc 100% 100% 100% 100% 
tar 1 - m60 50% 1% 100% 100% 
tar 2 - truck 100% 100% 100% 100% 

16 L18_15 Seq 1 339 

tar 3 - bradley 0% 0% 100% 10% 
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   tar 4 - tank1 0% 0% 100% 100% 
tar 1 - tank1 30% 30% 100% 100% 
tar 2 - bradley 50% 0% 100% 4% 

17 L18_15 Seq 2 342 

tar 3 - m60 90% 0% 100% 100% 
tar 1 - tank1 60% 6% 100% 16% 18 L18_16 328 
tar 2 - m60 50% 80% 100% 1% 
tar 1 - tank1 50% 25% 50% 15% 19 L18_17 Seq 1 240 
tar 2 - m60 100% 100% 100% 100% 
tar 1 - tank1 50% 25% 50% 43% 20 L18_17 Seq 2 266 
tar 2 - m60 100% 100% 100% 100% 
tar 1 - mantruck 20% 50% 50% 37% 
tar 2 - target 10% 100% 100% 100% 
tar 3 - apc1 10% 50% 100% 100% 
tar 4 - m60 10% 0% 10% 10% 
tar 5 - tank1 50% 0% 1% 100% 

21 L18_18 365 

tar 6 - testvan 40% 100% 100% 100% 
22 L19_01 240 tar 1 - tank1 1% 5% 1% 100% 
23 L19_02 270 tar 1 - tank1 0% 1% 1% 100% 
24 L19_04 270 tar 1 - tank1 90% 100% 100% 37% 

tar 1 - tank1 5% 5% 1% 100% 
tar 2 - apc 5% 5% 1% 0% 
tar 3 - mantruck 100% 100% 100% 100% 

25 L19_06 265 

tar 4 - van 100% 100% 100% 100% 
26 L19_07 195 tar 1 - mantruck 0% 0% 100% 100% 

tar 1 - tank1 100% 100% 100% 100% 27 L19_10 130 
tar 2 - apc 100% 100% 100% 100% 
tar 1 - tank1 100% 100% 1% 100% 28 L19_11 165 
tar 2 - apc 100% 100% 100% 100% 
tar 1 - tank1 95% 100% 70% 100% 
tar 2 - apc 95% 100% 100% 100% 
tar 3 - m60 100% 100% 100% 100% 

29 L19_13 265 

tar 4 - mantruck 95% 100% 100% 100% 
tar 1 - tank1 10% 0% 100% 24% 
tar 2 - apc1 95% 96% 100% 3% 
tar 3 - m60 10% 0% 70% 1% 

30 L19_15 350 

tar 4 - van 50% 0% 100% 2% 
tar 1 - tank1 20% 10% 100% 100% 31 L19_18 260 
tar 2 - m60 100% 100% 100% 100% 
tar 1 - m60 50% 100% 60% 100% 
tar 2 - mantruck 100% 100% 100% 100% 

32 L19_NS 275 

tar 3 - tank1 90% 2% 100% 25% 
33 L20_04 368 tar 1 - apc1 100% 100% 100% 100% 
34 L20_08 348 tar 1 - apc1 10% 5% 100% 100% 
35 L20_17 308 tar 1 - tank1 3% 2% 100% 100% 
36 L20_18 448 tar 1 - tank1 100% 100% 100% 100% 

tar 1 - tank1 10% 15% 10% 0% 37 L20_20 420 
tar 2 - target 20% 100% 50% 89% 

38 L21_04 760 tar 1 - bradley 0% 28% 100% 36% 
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   tar 2 - tank1 0% 3% 10% 1% 
39 L21_15 738 tar 1 - bradley 10% 3% 5% 1% 
40 L21_17 360 tar 1 - apc1 0% 100% 100% 1% 
41 L22_06 348 tar 1 - tank1 40% 35% 100% 11% 
42 L22-08 380 tar 1 - apc1 0% 0% 100% 1% 
43 L22_10 398   100% 100% 100% 100% 

tar 1 - m60 5% 0% 100% 13% 44 L22_14 350 
tar 2 - target 0% 0% 100% 100% 

45 L23_12 368 tar 1 - apc1 100% 100% 100% 100% 
46 M14_06 380 tar 1 - bradley 100% 100% 100% 100% 
47 M14_07 400 tar 1 - bradley 100% 100% 100% 100% 

tar 1- tank1 100% 100% 90% 100% 48 M14_10 498 
tar 2 - mantruck 80% 98% 40% 79% 

49 M14_13 380 tar 1 - mantruck 100% 100% 100% 100% 
tar 1 - mantruck 0% 100% 70% 70% 50 M14_15 528 
tar 2 - target 0% 100% 1% 33% 

 
 

 
Appendix B: Comparative performance evaluation of the four tracking algorithms 

developed at USA 
Total number of sequences 50 
Total number of multiple targets sequences 28 
Total number of reappearing targets 16 
Total number of targets in all 50 sequences 101 
  
 Tracking Algorithm Type 
 FJTC-

IVF-
TM 

CC-
IVF-
TM 

CC-
FJTC-
TM 

FJTC-
MSDF-
FJTC 

Total number of successful tracked sequences: 15 18 31 23 
Total number of successful tracked targets excluding reappearance: 38 50 75 65 
Total percentage of successful tracking excluding reappearance: 55% 58% 82% 72% 
Total number of targets' tracking failure due to overlapping : 3 3 3 3 
Total number of targets' tracking failure due to camera  noise : 7 6 3 3 
Total number of targets' tracking failure due to smoke : 24 24 3 20 
Total number of targets' tracking failure due to scaling : 0 0 0 1 
Total number of targets' tracking failure due to distraction by vicinity object 3 3 3 5 
Total number of targets' tracking failure due to other reasons :  26 15 14 4 
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Appendix C: Target Detection and Tracking Results Generated by the Data/ 
Decision Fusion Algorithms Developed at USA 

 
Algorithm #5 (DF #1): 2 USA algorithms (CC-IVF-TM and FJTC-MSDF-FJTC) 
Algorithm #6 (DF #2): 4 USA algorithms (CC-IVF-TM, FJTC-IVF-TM, CC-FJTC-TM, FJTC-MSDF-FJTC) 
 
Seq 
no. 

Sequence 
name 

Total 
frames 

Targets Tracking 
Results  
(DF #1) 

 

Tracking 
Results  
(DF #2) 

 
1 L14_15 281 tar 1 - mantruck 100% 100% 
2 L15_20 215 tar 1 - tank 100% 100% 

tar 1 - tank1 100% 100% 3 L15_NS 320 

tar 2 - truck1 100% 100% 
4 L16_04 400 tar 1 - tank1 100% 100% 

tar 1 - tank1 10% 30% 5 L16_07 410 

tar 2 - mantruck 100% 100% 
tar 1 - m60 100% 100% 
tar 2 - apc1 100% 100% 

6 L16_08 290 

tar 3 - mantruck? 100% 100% 
tar 1 - m60 100% 100% 
tar 2 - apc 100% 100% 

7 L16_18 300 

tar 3 - truck 100% 100% 
tar 1 - bradley 100% 100% 8 L17_01 388 

tar 2 - pickup 100% 100% 
tar 1 - mantruck 100% 100% 
tar 2 - pickup 100% 100% 
tar 3 - bradley 18% 41% 
tar 4 - mantruck 0% 55% 

9 L17_02 698 

tar 5 - tank 100% 100% 
tar 1 - target 100% 100% 10 L17_20 778 

tar 2 - m60 100% 100% 
11 L18_03 450 tar 1 - bradley 100% 70% 
12 L18_05 779 tar 1 - tank1 100% 100% 
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tar 2 - apc1 100% 100% 
tar 3 - m60 100% 100% 

   

tar 4 - tank1 100% 100% 
13 L18_07 260 tar 1 - bradley 100% 100% 

tar 1 - tank1 100% 100% 
tar 2 - bradley 100% 100% 

14 L18_12 300 

tar 3 - m60 100% 100% 
tar 1 - tank1 100% 100% 
tar 2 - m60 100% 100% 

15 L18_13 326 

tar 3 - apc 100% 100% 
tar 1 - m60 100% 100% 
tar 2 - truck 100% 100% 
tar 3 - bradley 100% 100% 

16 L18_15 
Seq 1 

339 

tar 4 - tank1 35% 35% 

tar 1 - tank1 100% 100% 

tar 2 - bradley 35% 100% 

17 L18_15 
Seq 2 

342 

tar 3 - m60 100% 100% 
tar 1 - tank1 100% 100% 18 L18_16 328 

tar 2 - m60 100% 100% 
tar 1 - tank1 100% 100% 19 L18_17 

Seq 1 
240 

tar 2 - m60 100% 100% 
tar 1 - tank1 100% 100% 20 L18_17 

Seq 2 
266 

tar 2 - m60 100% 100% 
tar 1 - mantruck 50% 100% 
tar 2 - target 100% 100% 
tar 3 - apc1 100% 50% 
tar 4 - m60 10% 25% 
tar 5 - tank1 1% 1% 

21 L18_18 365 

tar 6 - testvan 100% 100% 
22 L19_01 240 tar 1 - tank1 100% 100% 
23 L19_02 270 tar 1 - tank1 100% 100% 
24 L19_04 270 tar 1 - tank1 100% 100% 
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tar 1 - tank1 100% 85% 
tar 2 - apc 100% 100% 
tar 3 - mantruck 100% 100% 

25 L19_06 265 

tar 4 - van 100% 100% 
26 L19_07 195 tar 1 - mantruck 100% 100% 

tar 1 - tank1 100% 100% 27 L19_10 130 

tar 2 - apc 100% 100% 
tar 1 - tank1 100% 100% 28 L19_11 165 

tar 2 - apc 100% 100% 
tar 1 - tank1 100% 100% 
tar 2 - apc 100% 100% 
tar 3 - m60 100% 100% 

29 L19_13 265 

tar 4 - mantruck 100% 100% 
tar 1 - tank1 45% 100% 
tar 2 - apc1 100% 100% 
tar 3 - m60 100% 100% 

30 L19_15 350 

tar 4 - van 100% 100% 
tar 1 - tank1 100% 100% 31 L19_18 260 

tar 2 - m60 0% 0% 
tar 1 - m60 100% 100% 
tar 2 - mantruck 100% 100% 

32 L19_NS 275 

tar 3 - tank1 3% 100% 
33 L20_04 368 tar 1 - apc1 100% 100% 
34 L20_08 348 tar 1 - apc1 100% 100% 
35 L20_17 308 tar 1 - tank1 100% 100% 
36 L20_18 448 tar 1 - tank1 100% 100% 

tar 1 - tank1 100% 100% 37 L20_20 420 

tar 2 - target 89% 95% 
tar 1 - bradley 100% 100% 38 L21_04 760 

tar 2 - tank1 100% 100% 
39 L21_15 738 tar 1 - bradley 100% 100% 
40 L21_17 360 tar 1 - apc1 100% 100% 
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41 L22_06 348 tar 1 - tank1 100% 100% 
42 L22-08 380 tar 1 - apc1 100% 100% 
43 L22_10 398   100% 100% 

tar 1 - m60 18% 100% 44 L22_14 350 

tar 2 - target 100% 100% 
45 L23_12 368 tar 1 - apc1 100% 100% 
46 M14_06 380 tar 1 - bradley 100% 100% 
47 M14_07 400 tar 1 - bradley 100% 100% 

tar 1- tank1 100% 100% 48 M14_10 498 

tar 2 - mantruck 100% 100% 
49 M14_13 380 tar 1 - mantruck 100% 100% 

tar 1 - mantruck 100% 100% 50 M14_15 528 

tar 2 - target 100% 100% 
 

Appendix D: Performance evaluation of data/decision fusion 
algorithms 

Algorithm #5 (DF #1): 2 USA algorithms (CC-IVF-TM and FJTC-MSDF-FJTC) 
Algorithm #6 (DF #2): 4 USA algorithms (CC-IVF-TM, FJTC-IVF-TM, CC-FJTC-TM, 
FJTC-MSDF-FJTC) 
 
 
Total number of sequences : 50 
Total number of multiple targets sequences: 28 
Total number of reappearing targets : 16 
Total number of targets : 101 
 

 DF # 1 DF # 2 
Total number of successful tracked sequences: 31 31 
Total number of successful tracked targets excluding reappearance: 89 93 
Total percentage of successful tracking excluding reappearance: 91% 94% 
Total number of targets' tracking failure due to overlapping : 2 2 
Total number of targets' tracking failure due to camera  noise : 2 2 
Total number of targets' tracking failure due to smoke : 2 2 
Total number of targets' tracking failure due to scaling : 0 0 
Total number of targets' tracking failure due to distraction by 
vicinity object  2 1 

Total number of targets' tracking failure due to other reasons :  4 1 
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Appendix E: Target Detection at the Frame of First Appearance 

Total number of sequences : 50 
Total number of multiple targets sequences: 28 
Total number of frames where target appears for the first time: 65 
Total number of targets :  101 
Total number of successful detected targets:  38 
Total number of targets which cannot be discriminated:  32 
Total number of targets which cannot be detected:  30 
Total percentage of successful detection: 38/101= 38% 

 

Detection Results 

Seq 
no. 

Seq 
name 

Total 
frame Targets' names 

Frame 
number at 

which 
target 

appears 
for the 

first time 

Can detect 
and 

discriminate 
from 

nontargets 

Can detect but 
fail to 

discriminate 
from 

nontargets 

Can not 
detect 

1 L14_15 281 tar 1 - mantruck 1 yes     

2 L15_20 215 tar 1 - tank 1 yes     

tar 1 - tank1 1   yes   
3 L15_NS 320 

tar 2 - truck1 1   yes   

4 L16_04 400 tar 1 - tank1 1     yes 

tar 1 - tank1 200     yes 
5 L16_07 410 

tar 2 - mantruck 222   yes   

tar 1 - m60 1 yes     
tar 2 - apc1 1 yes     6 L16_08 290 

tar 3 - mantruck 190 yes     

tar 1 - m60 1 yes     
tar 2 - apc 1 yes     7 L16_18 300 

tar 3 - truck 1 yes     
tar 1 - bradley 1 yes     

8 L17_01 388 
tar 2 - pickup 1 yes     
tar 1 - mantruck 114 yes     
tar 2 - pickup 134 yes     
tar 3 - bradley 138     yes 

tar 4 - mantruck 174     yes 
9 L17_02 698 

tar 5 - tank 538     yes 

tar 1 - target 1 yes     
10 L17_20 778 

tar 2 - m60 44 yes     
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11 L18_03 450 tar 1 - bradley 1     yes 

tar 1 - tank1 1   yes   
tar 2 - apc1 1     yes 
tar 3 - m60 441     yes 12 L18_05 779 

tar 4 - tank1 696    yes 

13 L18_07 260 tar 1 - bradley 1   yes   

tar 1 - tank1 1  yes   

tar 2 - bradley 1   yes   14 L18_12 300 

tar 3 - m60 67 yes     
tar 1 - tank1 1 yes     
tar 2 - m60 1 yes     15 L18_13 326 

tar 3 - apc 1 yes     
tar 1 - m60 1  yes   
tar 2 - truck 11  yes   
tar 3 - tank1 51    yes 

16 L18_15 
Seq 1 339 

tar 4 - bradley 51  yes   

tar 1 - m60 1  yes   
tar 2 - tank1 36     yes 17 L18_15 

Seq 2 342 

tar 3 - bradley 42   yes   

tar 1 - tank1 1     yes 
18 L18_16 328 

tar 2 - m60 1  yes   
tar 1 - tank1 1 yes     

19 L18_17 
Seq 1 240 

tar 2 - m60 1 yes     
tar 1 - tank1 1   yes   

20 L18_17 
Seq 2 266 

tar 2 - m60 1 yes     
tar 1 - mantruck 1  yes   
tar 2 - target 3   yes   
tar 3 - apc1 22   yes   
tar 4 - m60 82   yes   
tar 5 - tank1 152   yes   

21 L18_18 365 

tar 6 - testvan 362 yes     

22 L19_01 240 tar 1 - tank1 1     yes 

23 L19_02 270 tar 1 - tank1 1     yes 

24 L19_04 270 tar 1 - tank1 1 yes     

tar 1 - apc 1     yes 

tar 2 - tank1 1   yes   

tar 3 - mantruck 1   yes   
25 L19_06 265 

tar 4 - van 55   yes   



 32

26 L19_07 195 tar 1 - mantruck 120   yes   

tar 1 - tank1 17     yes 
27 L19_10 130 

tar 2 - apc 57     yes 

tar 1 - tank1 1  yes   
28 L19_11 165 

tar 2 - apc 1  yes   

tar 1 - tank1 1    yes 

tar 2 - apc 1    yes 

tar 3 - m60 178  yes   

29 L19_13 265 

tar 4 - mantruck 232   yes   
tar 1 - tank1 1     yes 
tar 2 - apc1 1 yes     
tar 3 - m60 1 yes     

30 L19_15 350 

tar 4 - van 1     yes 

tar 1 - tank1 27   yes   
31 L19_18 260 

tar 2 - m60 27 yes     
tar 1 - m60 1 yes     
tar 2 - mantruck 87 yes     32 L19_NS 275 

tar 3 - tank1 147     yes 

33 L20_04 368 tar 1 - apc1 1 yes     

34 L20_08 348 tar 1 - apc1 1     yes 

35 L20_17 308 tar 1 - tank1 116   yes   

36 L20_18 448 tar 1 - tank1 1   yes   
tar 1 - tank1 1     yes 

37 L20_20 420 
tar 2 - target 150     yes 
tar 1 - bradley 1     yes 

38 L21_04 760 
tar 2 - tank1 70     yes 

39 L21_15 738 tar 1 - bradley 1     yes 

40 L21_17 360 tar 1 - apc1 1 yes     

41 L22_06 348 tar 1 - tank1 1     yes 

42 L22-08 380 tar 1 - apc1 1 yes     

43 L22_10 398 tar 1 - target 1 yes     

tar 1 - m60 1   yes   
44 L22_14 350 

tar 2 - target 1     yes 

45 L23_12 368 tar 1 - apc1 1 yes     
46 M14_06 380 tar 1 - bradley 1   yes   

47 M14_07 400 tar 1 - bradley 1 yes     
48 M14_10 498 tar 1- tank1 1 yes     
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   tar 2 - mantruck 1 yes     

49 M14_13 380 tar 1 - mantruck 1 yes     
tar 1 - mantruck 1 yes     

50 M14_15 528 
tar 2 - target 1 yes     

 
 
Appendix F: Publications and Theses Generated from This Project 
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1. A. Dawoud, M. S. Alam, A. Bal and C. Loo, “Decision Fusion Algorithm for Target Tracking 

in Infrared Imagery,” accepted for publication, Journal of Optical Engineering, Vol. 44, 2005. 

2. A. Bal and M. S. Alam, “Dynamic Target Tracking Using Fringe-adjusted Joint Transform 
Correlation and Template Matching,” accepted for publication, Journal of Applied Optics, 
Vol. 43, 2004. 

3. H. C. Loo and M. S. Alam, “Invariant Object Tracking Using Fringe-adjusted Joint 
Transform Correlation,” accepted for publication, Journal of Optical Engineering, Vol. 43, 
2004. 

4. M. S. Alam, M. Haque, J. Khan and H. Kettani, “Target Tracking in Forward Looking 
Infrared (FLIR) Imagery Using Fringe-adjusted Joint Transform Correlation,” Journal of 
Optical Engineering, Vol. 43, p. 1407-1413, 2004. 

5. M. S. Alam, J. Khan and A. Bal, “Hetero-associative multiple target tracking using fringe-
adjusted joint transform correlation,” Journal of Applied Optics, Vol. 43, p. 358-365, 2004. 

6. Five additional journal papers are currently undergoing review. 

 

F.2. Conference Publications (Includes 1 Invited Papers) 
1. M. S. Alam and A. Bal, “Automatic Target Tracking Using Global Motion Compensation and 

Fringe-adjusted Joint Transform Correlator,” to appear, Proceedings of the SPIE Conference 
on Algorithms and Systems for Optical Information Processing (part of 49th Annual Meeting 
of the International Society for Optical Engineering), Denver, Colorado, August 2004. 

2. A. Bal and M. S. Alam, “Feature extraction technique based on Hopfield neural network and 
joint transform correlation,” to appear, Proceedings of the SPIE Conference on Algorithms 
and Systems for Optical Information Processing (part of 49th Annual Meeting of the 
International Society for Optical Engineering), Denver, Colorado, August 2004. 

3. A. Bal and M. S. Alam, “Automatic Target Tracking in FLIR Image Sequences,” to appear, 
Proceedings of the SPIE Conference on Automatic Target Recognition, Orlando, Florida, 
April 2004. 

4. M. S. Alam, E. Horache and S. F. Goh, “Performance Evaluation for Cluttered Infrared 
Images Using Fringe-adjusted Joint Transform Correlation,” Proceedings of the SPIE 
Conference on Optical Pattern Recognition, (part of 2004 SPIE Defense/Security 
Symposium), Vol. 5437, pp. 63-74, Orlando, Florida, 12-16 April, 2004. 
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Automatic Target Recognition, Orlando, Florida, April, 2004. 

6. H. C. Loo and M. S. Alam, “Fringe-Adjusted Joint Transform Correlation Based Invariant 
Target Tracking in FLIR Image Sequences (Invited Paper),” Proceedings of the SPIE 
Conference on Optical Pattern Recognition (part of 2003 SPIE Defense/Security 
Symposium), Vol. 5437, pp. 38-50, Orlando, Florida, 12-16 April, 2004. 

7. A. Dawoud, M. S. Alam, A. Bal and C. H. Loo, “Data Fusion Framework for Target Tracking 
in Airborne Forward Looking Infrared Imagery,” to appear, Proceedings of the SPIE 
Conference on Multisensor Data Fusion, Orlando, Florida, April 2004. 

8. M. S. Alam, A. El-saba, E. Horache and S. Regula, “Joint Transform Correlation for 
Fingerprint Identification (Invited Paper),” to appear, Proceedings of the SPIE Conference on 
Optical Pattern Recognition, San Jose, California, January 26-29, 2004. 

9. M. S. Alam, H. Kettani, M. Haque, J. Khan, A. A. S. Awwal and K. M. Iftekharuddin, 
“Fringe-adjusted JTC Based Target Detection and Tracking Using Subframes from a Video 
Sequence,” Proceedings of the SPIE Conference on Photonic Devices and Algorithms for 
Computing V (part of 48th Annual Meeting of the International Society for Optical 
Engineering), Vol. 5201, p. 85-96, SPIE, San Diego, California, 3-8 August, 2003. 

10. M. S. Alam, “Parallel optoelectronic pattern recognition architectures and algorithms (Invited 
Paper),” Proceedings of the 25th Conference on Opto-electro-techniques and Laser 
Applications, p. C01-C06, IEEE, Jakarta, Indonesia, October 2-3, 2002. 

11. M. S. Alam, “Real Time Pattern Recognition and Tracking (Invited Paper),” Abstracts of the 
2002 Annual Meeting of the Optical Society of America, p. 122, OSA, Orlando, September 
29 - October 4, 2002. 

12. M. S. Alam, “Class-associative pattern recognition using joint transform correlation (Invited 
Paper),” Proceedings of the SPIE Conference on Photorefractive Fiber and Crystal Devices: 
Materials, Optical Properties, and Applications VIII (part of 47th Annual Meeting of the 
International Society for Optical Engineering), p. 79-89, Vol. 4803, Seattle, Washington, 7 - 
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Executive Summary 

The problems of automatic target detection, tracking, recognition and classification have 
been active research fields in image processing and Neural Networks (NN). In this report, we 
explore novel ATR techniques such as object pre-processing, detection, tracking and 
classification of sequence of Infrared (IR) images provided by the Army Missile Command 
(AMCOM), Huntsville AL. The target images in the IR database contain various distortions such 
as translation, scale or rotation (both in-plane and out-of-plane) as well as extensive background 
clutter and noise. We present image pre-processing, detection and tracking algorithms for both 
single and multiple objects that segment, detect and track the object(s) based on four different 
techniques such as i) intensity; ii) correlation time; iii) correlation frequency; and iv) Bayesian. 
For the first three techniques, we attempt to detect and track the targets automatically without the 
prior knowledge of the location and size of the object in the reference frame. For our fourth 
technique (Bayesian), we assume full knowledge of the object using ground truth (GT) data. In 
addition, we exploit an elegant mathematical approach using Hilbert transform pair of wavelet 
bases in the determination of exact angle of rotation for targets. We compare the relative 
performance of Hilbert wavelet, Hilbert transform in determination of in-plane and out- of plane 
rotation angles. Note that this Hilbert-wavelet analysis is performed as part of our other ongoing 
research in the relevant areas. 

 In our proposed detection and tracking algorithms, we preprocess the image sequences to 
segment the object from the background clutter and noise and extract relevant statistical and 
intensity object features. We enhance our algorithm to track multiple objects in image frames 
based on the knowledge of the histogram of the targets.  In some example image frames, we 
obtain detection and tracking of the background instead of the objects due to presence of 
excessive amount of background clutter. This problem of background detection and tracking is 
magnified for the first three techniques (such as intensity, correlation time and correlation 
frequency) wherein the initial selection of the reference frame is quite arbitrary. However, 
improved detection and tracking performance may be achieved in the Bayesian technique since 
the knowledge of the target location in the first frame is initially known from the GT data.  We 
obtain extensive comparative performance metrics of our proposed techniques in detecting and 
tracking the objects. We also devise graphical user interfaces (GUI) to facilitate such comparison 
of the metrics. 

Finally, we take advantage of our detection and tracking algorithms to extract the best 
possible features of the image to feed to the neural network (NN) for classification. In this work, 
we use self-organizing map (SOM) and k-nearest neighbor NN techniques to classify the dataset. 
We use different image statistical features as well as intensity and shape of the object for 
classification. An edge-tracing method is also investigated which sequentially traces all the 
connected points in the edge to form the shape of the image. Our classification algorithms 
successfully clusters the image sequences into pre-defined classes based on the size of the object. 
Note that the success of any NN classification depends on the availability of representative 
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references data sets. The AMCOM IR datasets do not contain such pristine reference image of 
the targets. Thus, the goal of our image classification in this project has been to identify useful 
classification methods for future investigation. 

 
1. Introduction 
The problems of automatic target recognition (ATR) and image classification have been active 
research fields in image processing and neural networks. The image classification is often limited 
by the presence of background clutter noise. Further, the image may be subjected to different 
type of distortions such as scale, translation and rotation. Thus, the researchers of animal and 
machine vision have researched distortion-invariant ATR and Image Understanding (IU) 
actively. The present state of the art machine vision systems do not even approach the 
performance of human vision in IU, which implies that there is still much to be learned from 
biological vision systems. With this in mind, researchers have chosen biomorphic-engineering 
approaches such as Neural Networks to solve rather intricate ATR and IU Problems. ATR is the 
processing and understanding of an image in order to recognize the targets. The long time 
objective of ATR research is to derive useful approximations or bounds on the performance of 
ATR systems in distortion-related cases. It is understood that the most accurate estimates of the 
performance of a particular ATR system are obtained by compiling the results of end-to-end 
systematic experiments on rich sets of measured data. Unfortunately, the end-to-end experiments 
are fiscally and computationally expensive. More importantly, the task of measuring or 
simulating a set of targets over the variety and range of extended operating conditions is beyond 
current capability. Therefore, almost all the ATR studies involve either simulated or limited scale 
ground data such as grayscale, synthetic aperture radar (SAR) or infrared images.  

ATR functionally relies in some way on its knowledge of how the objects and classes of 
interest appear. The ‘comparison’ of this knowledge to the current information on new object 
determines the results of the recognition process. In order to train and verify the performance of 
a classifier, it is necessary to have truth data for all image objects used during training and 
verification. Exogenous information such as fields of view and horizontal, vertical and 
depression angles can be used to a greater advantage along with the primary data stream.  Motion 
tracking is also an important task in computer vision especially when objects are subjected to 
certain viewing transformations. Even though the feature space maximizes the similarity of 
objects in the same class and minimizes the similarity of objects in different classes, the general 
nature of ATR imagery makes feature based classification a very hard problem. A variety of 
classification schemes have been implemented and evaluated. Structural constraints reduce the 
number of independent weights by using a locally connected structure or sharing the same 
weights on many connections. 

2.  Detection and Tracking Results 
2.1 Intensity-based Algorithm 
 
a) Single object case 

We apply our preprocessing and detection algorithm on one L17_20 of the IR public 
image database [25].  These are the scaled and rotated images from the database. Fig.1 shows 
some of the results of detection and tracking obtained. Out of 778 images in the database, a total 
of 750 images are detected and tracked correctly. We have applied our detection and tracking 
algorithm on other sequences of the database [25] and obtained the similar results. 
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Fig. 1 Detection and tracking of objects at different scales and angles 
 

b) Multiple object case 
 

                
              (a)           (b) 

                       
         (c)           (d) 
 

Fig. 2 Detection and Tracking multi- object case 
 

The plots in the Fig. 2 correspond to the detection and tracking of 2 different images in multiple 
frames. The plots on the top left corner in Fig. 2(a), (b), (c) and (d) show the histogram of the 
raw image. The peak in the histogram corresponds to the intensities of the most dominant object 
in the frames. The plots on the lower left in all Figures correspond to the detection and tracking 
using the raw images with no intensities removed. The plot on the top right corresponds to the 
histogram of the image with the intensities of the most dominant object removed while the plots 
on the lower right correspond to the detection and tracking of next dominant object in the frame. 
We have experimented with algorithm to detect and track the multiple objects on other image 
sequences in the database and obtained the similar results. 
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c)  Selection of Initial Reference frame (Intensity Algorithm) 
The first reference frame is selected from the sequence L17_20 as shown in Fig. 3(a). 

Note that this selection is quite arbitrary. We only need a reference frame that helps us in  
 

                           
 

Fig .3 a) Raw Reference frame (L17_20, frame number 350) and b) Pre-processed frame (L17_20, frame number 
500) 

locating the high intensity region in the sequence for detection and tracking of targets. It is 
important to note that while our algorithm performance results shown herein are obtained using a 
reference frame, however, this requirement is not mandatory. To prove this hypothesis that we 
really do not need any specific reference frame, we have done pre-processing on another frame 
as shown in Fig. 3(b). We show the resulting detection and tracking in Fig. 4. 

The dark box corresponds to the box created using the tracking algorithm and bright box 
is the box created using the GT data. Figure 4 and suggests that the pre-processing is good 
enough to select ‘any’ reference from a sequence for successful detection and tracking.  

 

 

 
Fig. 4 Verification of detection and tracking based on intensity with ground truth data. 

 
2.2 Bayesian Algorithm 
 

 
Fig 5 Single Target Detection and Tracking results using Bayesian algorithm (sequence L17_20) 
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Figure 5 shows the detection and tracking results obtained using Bayesian algorithm. From the 
Figure it is evident that the relative change in intensity is not much and hence we obtain better 
detection and tracking results. Figure 6 shows the error in detection and tracking of the object 
due to the drastic changes in the intensity using algorithm.  
 

 
Fig.6 Drastic change in intensity in successive frames results in error in the successive frames (Sequence L22_08) 

 
Figure 7 shows the multi-target detection and tracking results. From the Figure, it is evident 

that satisfactory detection and tracking results have been obtained. 
 

 
Fig.7 Multiple Target Detection and Tracking results using Bayesian algorithm (Sequence L18_16) 

 
3.3 Hilbert-wavelet based Analysis  
 
a)  Out-of-plane rotation angle detection 

We first select the 278 image frames that represent out-of-plane rotation from the L17_20 
sequence of 778 frames at regular intervals. Frames in Fig. 8 clearly show an example of out-of-
plane rotation and scaling since the image in the first frame is moving towards the northeast 
direction while the last frame is moving towards northwest.  

 

 
   Image at 00

    Image at 150
    Image at 300

   Image at 450
    Image at 600

   Image at 750
  Image at 900 

 
Fig. 8 Out of plane rotated and scaled image database 

 
From the results obtained in Fig.9 (a), we find that there are only two cases, wherein the 

rotation angles have been improperly determined. A close observation of the test images in the 
database suggests that objects in the same two frames do not have enough information. Graphs 
with corresponding correlation values are shown in Fig. 9(b). The two dips at frame numbers 41 
and 154 correspond to the two hikes corresponding to two confused cases in Fig. 9(a). 
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     (a)            (b) 

Fig .9 Rotation angle determinations with Hilbert wavelet (a) Frame number vs. Rotation angle (b) Frame number 
vs.  Correlation 

 

b) Improved Detection and Tracking (Distorted case using Hilbert-wavelet) 
The next task involves the detection and tracking of the object based on the correlation 

value. Note that this Hilbert-wavelet analysis is performed as part of our other ongoing research 
in the relevant areas. The tracking of the target improves further when we use the reference 
images exactly similar to the test image as shown in Fig. 8. The tracking results using the Hilbert 
wavelet correlation is shown in Fig. 10. Comparing Fig. 5 and Fig. 10 it is clear that objects may 
be tracked by using reference images similar to test cases but different in scale, angle (in plane 
and out of plane) or combination of both and more efficient tracking can be achieved by using 
the images exactly similar to the test cases.  

 

            
Fig. 10 Tracking of objects, improved cases. 

 
In summary, four general purpose algorithms and one mathematical analysis for image preprocessing, detection and 

tracking the targets have been proposed. We discuss two of these techniques in detail since the other techniques 
involve similar steps. The results obtained for detection and tracking have been presented. We have experimented 

our detection and tracking algorithms on other sequences in our database and obtained the similar results. Detection 
and tracking of the multiple objects in the frame has also been successful. Most of the frames in the image sequence 

have been detected and tracked successfully.  
 

3. Classification 
 
a) SOM Classification with Intensities as feature vector 
 

Consider the extracted intensity features obtained from the IR image database [25] as 
shown in the Fig 11.  

 

 
Fig. 11 Features of the object with background removed. 
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Fig. 11 shows the resulting intensity features. The dataset consists of images, which contains out-
of-plane rotation and scale variations. From Fig. 11, it is obvious that the images in the first row 
show the scale change and the images in the bottom row show both angle and scale changes. We 
take the images at regular intervals of 30 frames in a sequence of 378 images for training such 
that the images are sufficiently different from each other. Euclidean distance is a good measure 
of similarity between the images. Thus, we calculate the Euclidean distance as shown in Table 1 
to ascertain that the resulting eight training cases are sufficiently different from each other. From 
the Table 1 it is clear that only training cases 2 and 3 are similar, and the rest of the cases are 
sufficiently different from each other. Thus, ignore training case 3 and trained the network using 
the rest of the cases. 

Table 1. Euclidean distance between the training cases. 
Training 
Image 

1 2 3 4 5 6 7 8 

1 0 0.0290 0.0290 0.0309 0.0271 0.0297 0.0584 0.0666 
2 0.0290 0 2.4734e-004 0.0027 0.0133 0.0206 0.0337 0.0486 
3 0.0290 2.4734e-004 0 0.0026 0.0132 0.0206 0.0338 0.0486 
4 0.0309 0.0027 0.0026 0 0.0125 0.0198 0.0314 0.0464 
5 0.0271 0.0133 0.0132 0.0125 0 0.0086 0.0323 0.0417 
6 0.0297 0.0206 0.0206 0.0198 0.0086 0 0.0321 0.0375 
7 0.0584 0.0337 0.0338 0.0314 0.0323 0.0321 0 0.0214 
8 0.0666 0.0486 0.0486 0.0464 0.0417 0.0375 0.0214 0 
 

Examples of 3 different clusters out of 8 are shown in Fig. 12 with cluster centers along 
with corresponding few images in each cluster. From the classification plots in Fig. 12, it is 
obvious that the similar images have been clustered in one cluster. Images in cluster 1 are the 
ones after the image has undergone out-of-plane rotation of 900 while moving along y-axis. 
Images at smaller scales are grouped in cluster 2, while those at an intermediate scale are 
grouped in cluster 3. The images in cluster 7 are at a higher scale and those in cluster 8 are at 
smaller scales and are moving at 0 degrees with respect to y-axis respectively. The images in 
cluster 4 are the ones when the image was undergoing some angle change with respect to y-axis. 
Cluster 5 captured the occluded objects. They are classified as the images which have undergone 
out-of-plane rotation of 900 but smaller in scale. Finally, cluster 6 consists of predominantly the 
noise points.  

 
 

Fig. 12 Cluster plots for Image sequence database 1. 
 
 

Cluster1 

Cluster 7
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b) SOM Classification with Shape as feature vector 
As discussed earlier we keep the first 30 DCT coefficients to retain most of the information. The 
training set is selected manually and care has been taken that they are taken at regular intervals 
of 30 so that they can be sufficiently different from one another. We determine the Euclidean 
distance among the images in order to find how similar or dissimilar the images are as shown in 
Table 2. 
 

Table 2. Euclidean distance between training cases 
Training 
image 

1 2 3 4 5 6 7 8 

1 0 5.1710 2.7832 6.0188 6.6933 7.5902 38.3086 69.9684
2 5.1710 0 3.6456 1.7805 1.9442 3.3205 33.5627 66.8063
3 2.7832 3.6456 0 4.7818 5.0050 5.9175 36.4828 69.5037
4 6.0188 1.7805 4.7818 0 2.0195 3.3377 32.9519 65.9773
5 6.6933 1.9442 5.0050 2.0195 0 2.1245 32.0379 66.3667
6 7.5902 3.3205 5.9175 3.3377 2.1245 0 31.1081 67.1602
7 38.3086 33.5627 36.4828 32.9519 32.0379 31.1081 0 58.3008
8 69.9684 66.8063 69.5037 65.9773 66.3667 67.1602 58.3008 0 

 
From the Table 2, it is evident that the training images are dissimilar enough to be 

considered as different training cases. When we train the SOM using the different training cases, 
the similar shapes are grouped as centers of nearby clusters while the dissimilar shapes are 
grouped in different clusters. From Fig. 13 (2 out of six are shown), it is clear that the images 
belonging to the similar shape are classified as one cluster. The images in cluster 1 show the 
shape of the image after the image has undergone 900 rotation with respect to its original motion.  

 

 
Fig. 13 Classification using the SOM with edges as feature vectors. 

 
Cluster 2 consists of images that may not be traced properly. It also includes the images that are 
similar to mis-traced images. Cluster 4 consists of images that are partially occluded. Cluster 3, 
5, 6 have images of similar shape but cluster 5 has mis-traced images. From our observation of 
the dataset we find that the object moves at an angle of 900 with respect to its original motion  
 
 

Cluster 1 
Cluster 6 
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Fig. 14(a) Edge and (b) Mis-traced edge. 
 

after frame number 300 (out of 375 frames) are the ones after the image has moved at an angle of 
900 with respect to its original motion. When we plot the traced contour of these confused cases, 
we observe that image frames are not traced correctly as shown in Fig. 14. As a result, these 
partially edge-traced frames were grouped in the wrong clusters by SOM classifier.  
 
c) k-NN Classification with Shape as feature vector 
The results of the k-nearest neighbor classifier are obtained and results obtained by varying the 
usage of statistical features are observed.  
 
i) Results using intensity features 
 We show an example classification result using the intensity features form L17_20 data 
sequence below.  
 

    
Fig.15 Class vs. image number using all intensity   Fig.16 Classes vs. image number using statistical   
           features                  features 
 
Figure 15 shows how many images are classified under in each of the 8 classes that we have pre-
defined. The description of the individual classes is shown in Fig. 16. 
 
Class1 

    
Class3 

    
Class5 

    

Traced edge
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Class8 

    
Fig.17 Example of different classes 

 
Cluster 1 consists of images with improper segmentation. Cluster 2 consists of images when the 
object has not undergone rotation at higher scale. Cluster5 shows images when object is just 
making a turn. Cluster 8 shows objects at high scale when object has undergone 90 degrees 
rotation and it also shows occluded objects classified correctly as one of non occluded objects. 
 
ii) Results using statistical features 
 

 

 
Fig.18 Similar images from cluster1 and cluster 3 

 
We show an example classification result using the statistical features such as mean, variance, 
maximum, minimum form L17_20 data sequence in Fig. 17. All the intensity features are now 
replaced by statistical features. The image (region of interest (57 x 57)) is now taken and divided 
into blocks of 8 x 8 and each block is replaced by statistical features. Each of these statistical 
features are first normalized by dividing the whole matrix by maximum number in that matrix. 
This is done in order that one particular feature not have major impact on classification. The 
results obtained are similar to the ones shown above. 
The improperly segmented images now fall into cluster2. Some of the images from cluster 
1(previously using all intensity features) are now classified under cluster 3. Careful observation 
of data shows that there is not much change between images of cluster 1 and cluster 3 
respectively as shown in Fig. 18. 
 
4. Performance Metrics 
 We obtain the Receiver Operating Curves (ROC) metrics for our Intensity-based 
algorithm as shown below.  
 
4.1 Results for the ROC curves 
 We plot detection and tracking performance vs. filter size and filter resolution in Figs. 20 
and 21 respectively. 



 46

                
     Fig 19 Performance of  1) Minimum filter, 2)                       Fig 20 Performance of the filters at different 
     Median filter, 3) Max of east west north south filter                         resolutions 

      and  4) Maximum filter for varying window size. 
 
 

In Fig. 19 note that the x-axis variable represents the following format (3 represents 3 x 3, 4 represents 4 x 4 and so 
on) for the size of the window. From the plot is clear that the maximum filter for the window size of 3 x 3 offers the 
best tracking performance. We perform the detection and tracking algorithm for various resolutions of the images. 

The resolution increases as we move from left to right along the x-axis. From the Fig. 20, it is evident that increasing 
the resolution offers better tracking for all types of rank-order filters considered.  From Fig. 21 it is clear that higher 

percent of compression yields increasing percent of mis-tracking.  
 
 

                                    
Fig 21 Change in % of tracking     Fig. 22 Signal to noise ratio of the            Fig. 23 Performance of the classifier 
           for varying compression                images taken at regular              for varying window size 

 intervals of 30 
 

The SNR is obtained and it is plotted in Fig. 22 for images at regular intervals of 30 for a 
sequence of 778 images. As the potential target size increases in the frame sequence (change of 
scale), the signal to clutter ratio also increases as shown in Fig. 23 as the target becomes larger. 
From Fig. 23 it is clear that smaller block size offers better classification.  
 
4.4 Composite Metrics 

We summarize our results and experiments of our proposed algorithm in Table 3. Table 3 
shows the summary of most of the results obtained in this work. From the table it is obvious that 
discarding about 50 % of the coefficients offers a reasonable result. The classification using the 
SOM gave a reasonable classification of about 89 % using statistical features and about 82.16 % 
using the shape features. The rest of the results are obvious. 
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Table 3. Summary of results. 

*933 MHz p-3 xeon processor with 256 MB of memory  
 
 
 
 
 
 
 
 
4.5  Comparison Metrics 
 In Table 4 below, we summarize the comparative performance metrics of our four 
general purpose detection and tracking algorithms described above for all 50 data sequences in 
the AMCOM database.  

Results obtained at U of M 
ID No. Sequence 

name 
No. of 

frames 
No. of 
target

s 

description 
of targets 

in the 
sequence

SNR (# 
of target  

pixels 
divided 

by 
backgrou

nd) 

% of 
Detection  

and 
Tracking 
(Intensity
_algorith

m)

% of 
Detection  

and 
Tracking 
(correlati
on_algori

thm)

% of 
Detection  

and 
Tracking 

(bayesian
_algorith

m)

% of 
detection 

and 
tracking 

corr_freq
uency 

algorithm 

 %of 
Detection 
and 
tracking 
(manual_c
ombined_s
ummary) 

 %of 
Detection 

and tracking 
(automated

_combined_
summary)

1 L15_20 215 1 tank 0.0127 tank 
85.58%

tank 83% tank 
100%

tank 
18.13% 

tank - 
100% 

tank - 74%

2 L15_NS 320 2 tank1, 
truck1

0.0097  tank1 
76.42% & 

truck1-
9%

tank1-
75.4% 
truck1-

9.5%

tank1(75/
320)23%, 
truck(8/2

0) 40%

tank1- 
38.75% 

tank1- 
75%; truck 
40% 

tank1- 65%; 
truck 55%

3 L16_04 400 1 tank1 x no binary 
files 

exists

66% 89% 30.57% no GT to 
compare 

no GT to 
compare

4 L16_07 410 3 tank1, 
mantruck, 

tank1

0.0093 tank1 
86% 

mantruck 
77.98% 

tank1 
30%

tank1 
90% 

mantruck 
81.91% 

tank1 
30%

tank1(24
4/410) 

60% 
mantruck
(386/386) 

100%

tank1- 
22.7% 

tank1 - 
90%; 
mantruck 
100%; 
tank1 - 
30% 

tank1 - 
86%; 

mantruck 
78%; tank1 

- 30%

Image sequence In-plane rotation identification 
results 

Out-of plane rotation identification Tracking Classification 

SOC MOC Seg. T* s/f % 
M-
det 

Avg. 
corr 

% of 
Comp. 

T* s/f % M-
det 

Avg. 
corr 

% M-Tr. Features SOM 
(% of 

classification) 
L1720 - No 2.881 0 91.6 0 2.00 0.72 99.2 0.64 Intensity 

 
Shape 

89.92 
 

82.16 
L1720 - No 2.822 0 90.8 50 1.72 0.72 99 - - - 
L1720 - No 2.08 0 82.3 80 1.117 47.1 90 - - - 
L1720 - No 1.999 0 77.8 90 1.01 87.98 87.87 - - - 
L1720 - Yes 0.460 0 74.6 0 1.516 67.27 95.3 - - - 

- L1818 No 2.880 0 95.5 0 2.01 0.38 92.38 6 - - 
- L1818 Yes 2.822 0 94.3 50 1.72 0.38 90.36 - - - 
- L1818 Yes 2.08 0 89.1 80 1.117 37.33 90.28 - - - 
- L1818 Yes 1.999 0 88.02 90 1.01 79.97 87.82 - - - 

% M-det: Percentage of mis-detection (Ratio of number 
of images whose angle has been identified wrongly to the 
total number of images). 
Avg. corr: Average correlation. 
% of Comp: Percentage of compression ( Ratio of number 
of discarded coefficients to the total number of 
coefficients). 
SOM: Self organizing map. 
T s/f: Time in seconds per frame 

SOC: Single object case. 
MOC: Multiple object case. 
Seg. : Segmentation. 
T s/f: Time in seconds per frame 
% M-Tr: Percentage of Mistracking 
(Ratio of number of images, which 
have not been tracked to the total 
number of images). 
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5 L16_08 290 3 m60, apc1, 
mantruck

0.0175 mantruck 
67.8% 

m60 
100% 
apc1 
32%

mantruck 
69.38% 

m60 
100% 
apc1 

31.33%

mantruck
(37/98)38

% 
m60(290/

290)100
%;apc1(5
2/83)63%

m60%- 
50% 

m60-
100%; 
apc1 - 
84%; 
mantruck - 
69% 

m60-100%; 
apc1 - 
100%

6 L16_18 300 3 apc1, m60, 
truck

0.0184 apc1 for 
83.85%, 
m60 for 
12.12% 

apc1 
83% m60 

13.33% 
truck 0%

apc1(291
/291)100
%;m60(3
4/102)33

%truck(7/
7)100%

apc1- 
40.54% 

apc1-
100%; 
m60-33%; 
truck-
100% 

apc1-100%; 
m60-95%; 

truck-100%

7 L17_01 388 2 bradely,pic
kup

0.0125 bradely  
84.7% 
pickup 

0%

bradely 
95.14% 
pickup 

0%

bradely(1
00/371)2

7% 
pickup(16

/46)35%

bradely- 
41.5% 

bradely-
95%;  
pickup-
42% 

bradely-
75%;  

pickup-0%

8 L17_02 698 5 Man 
pickup 

bradely

0.0047 mantruck  
53.9% 

and 
bradely  

27% 

mantruck
1 40% 
pickup 

0% 
bradely 

30%

mantruck
(273/459)
60%,pick
up(46/69)
67%,brad
ely(214/3
43)62%,t
ank(50/5
0)100%

mantruck
- 33.2% 

tank1- 
8.1% 

bradely- 
40.24% 

mantruck-
60%; 
bradely-
62%; tank-
100%; 
pickup-
67% 

mantruck-
59%; 

bradely-
49%; tank-

100%; 
pickup-0%

9 L17_20 778 2 target, 
m60

0.011 m60  
70.5% 

target 0%

target 
5.7% 
m60 

71.16%

target(0/3
5)0% 

m60(743/
743)100

%

target- 
73.6% 

m60- 
69.45% 

target-
73.6%; 
m60-100%

target-14%; 
m60-78%

10 L18_03 450 1 bradely 0.0046 bradely  
58% 

bradely 
69.12%

27% bradely- 
54.8% 

bradely-
69% 

bradely-
64%

11 L18_05 779 4 tank1, 
apc1, m60, 

tank

0.0053 no GT 
data

no GT 
data

no GT 
data

no GT 
data 

no GT to 
compare 

no GT to 
compare)

12 L18-07 260 1 bradely 0.00952 bradely  
94% 

bradely 
97%

bradely 
78%

bradely- 
36.5% 

bradely-
97% 

bradely-
96%

 L18_12 300 3 bradely, 
tank1, m60

0.0108 bradely  
96%

bradely 
86.66% 

tank1 
15.08%;

m60 
8.6%

bradely(3
00/300)1
00%;tank
1(202/20
2)100%; 

m60(94/9
4) 100%

bradely- 
37.66% 

bradely-
100%; 
tank1-
100%; 
m60-100%

bradely-
97%; tank1-
92%; m60-

100%

14 L18_13 326 3 tank1, 
m60, apc1

0.0204 tank1  
82.52%  

m60 48% 
apc1 
22%

apc1-
26.58% 

tank1-
84.59% 

m60-
53.04%

apc1-
(78/170) 

46%

tank1- 
40.97% 

tank1-
85%; m60-
53%; 
apc1-46% 

tank1-85%; 
m60-95%; 
apc1-83%

15 L18_15  
seq-1 

339 4 m60, truck, 
tank1, 

bradely

0.0098  tank1-
68.9% 

bradely  
75%

m60-
45.62% 

truck-9% 
tank1-

81.75% 
bradely-

74.886%

m60-
(238/238) 

100% 
tank1-

(103/285) 
36%

m60- 
43.67% 

tank1- 
20.33% 
bradely- 

18.7% 

m60-
100%; 
truck-
100%; 
tank1-
82%; 
bradely-
100% 

m60-99%; 
truck-92%; 

tank1-97%; 
bradely-

85%

        truck(12/
12) 100% 
bradely(1

87/187) 
100%
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16 L18_15  
seq-2 

342 3 m60, 
tank1, 

bradely

0.0121 tank1  
87% 

m60-
46.63% 

tank1-
84.27% 
bradely-
77.77%

m60 
(243/243) 

100%  
tank1 

(208/314) 
66%  

bradely 
(181/191) 

95%

m60- 
2.9% 

tank1- 
27.24% 
bradely- 
29.25% 

m60-
100%; 
tank1-
87%; 
bradely-
95% 

m60-100%; 
tank1-90%; 

bradely-
90%

17 L18-17  
seq-1 

240 2 tank1, m60 0.0145 different 
objects 
for 66% 

tank1-
57.9% 

m60-96%

tank1(12
0/240) 

50% 
m60(198/

198) 
100%

tank- 
2.5% 

tank1-
58%; m60-
100% 

tank1-88%; 
m60-100%

18 L18_17  
seq-2 

266 2 tank1, m60 0.00153 no gt.lis 
file 

various 
objects 

70% 

no gt.lis 
file

no gt.lis 
file

no GT.lis 
file 

no GT file 
to 
compare 

no GT file to 
compare

19 L18_16 328 2 tank1, m60 0.0205  tank1-
44.9% 

and m60 
20.43% 

tank1-
61.58% 

m60-
51.54%

tank1 
(145/329) 

44%  
m60 

(290/290) 
100%

tank1- 
22.86% 

tank1-
62%; m60-
100% 

tank1-53%; 
m60-99%

20 L18_18 365 6 mantruck, 
target, 

apc1, m60, 
tank1, 

testvan

0.0224 tracking 
algorithm 
confuses 

for first 
140 

frames 
tank1 for 

78.1%

mantruck
-4.2% 
apc1-
24% 

m60-
21.77% 

tank1-
81.86% 
testvan-

0% 
target-

25%

mantruck 
- (33/44) 

75%, 
target - 

(3/4) 
75%,  

apc1 - 
(56/95) 

59%,  
m60 - 

(44/121) 
37%,  

tank1 - 
(205/213) 

96%, 
testvan - 

(4/4) 
100%  

mantruck
- 7.4% 
target- 

9.6% 
apc1- 

5.31% 
m60- 

11.4% 
tank1- 
13.6% 

mantruck-
75%; 
target-
75%; 
apc1-59%; 
m60-37%; 
tank1-
96%; 
testvan-
100% 

mantruck-
60%; target-
75%; apc1-
66%; m60-

53%; tank1-
99%; 

testvan-
100%

21 L19_01 240 1 tank1 0.0145 Tank1  
74.3%

tank1-
68.3%

Tank1 
0%

tank1- 
53.33% 

tank1-74% tank1-79%

22 L19_02 270 1 tank1 0.0359 tank1 
10%

tank1-
84.7%

Tank1 
0%

tank1- 
31.88% 

tank1-85% tank1-91%

23 L19_04 270 1 tank1 0.0454 tank1 
80.74% 

tank1-
73.34%

Tank1 
37%

tank1- 
44.44% 

tank1-81% tank1-78%

24 L19_06 265 4 tank1, 
apc1, 

mantruck, 
van

0.041 tank1 for 
27.42% 

tank1-
84.9% 
apc1-

92.4% 
mantruck

-65% 
van-0%

tank1 
(265/265) 

100%  
apc1 

(238/265) 
90% 

mantruck 
(69/197) 

35%  
van 

(20/20) 
100%

tank1- 
34.45% 

tank1-
100%; 
apc1-90%; 
mantruck-
65%; van-
100% 

tank1-69%; 
apc1-83%; 
mantruck-
61%; van-

100%

25 L19_07 195 1 mantruck 0.0441 mantruck 
14.53%

mantruck
-7%

mantruck 
94%

mantruck
- 58.8% 

mantruck-
94% 

mantruck-
83%
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26 L19_10 130 2 tank1, 
apc1

0.0413 tank1  
87% 

apc1-
51.35% 

tank1-
83.33%

tank1 
(130/130) 

100%  
apc1 

(90/90) 
100%

tank1- 
41.22% 

tank1-
100%; 
apc1-
100% 

tank1-
100%; 

apc1-100%

27 L19_11 165 2 tank1, 
apc1

0.0874  tank1 for 
93.94% 

tank1-
95.15% 

apc1-
98.78%

tank1 
(165/165) 

100% 
apc1 

(165/165) 
100%

tank1- 
23.6% 

tank1-
100%; 
apc1-
100% 

tank1-
100%; 

apc1-100%

28 L19_13 265 4 tank1, 
apc1, m60, 

mantruck

0.0474 tank1 for 
77.78% t

tank1-
83.9% 
apc1-

86.79% 
m60-80% 
mantruck

-40%

tank1 
(106/264) 

40%  
apc1 

(208/264) 
79%; 
m60  

(35/66)  
53% 

mantruck 
(12/12) 

100% 

tank1- 
32.07% 

tank1-
84%; 
apc1-87%; 
m60-80%; 
mantruck-
100% 

tank1-93%; 
apc1-84%; 
m60-82%; 
mantruck-

100%

29 L19_15 350 5 tank1, 
apc1, m60, 

van, apc1

0.0454 tank1 for 
70.86% 

m60-
63.41%  

tank1-
63.6%  

van-
59.44%  

apc1-
54.16%

m60 
(184/347) 

53%  
tank1 

(129/332) 
39% 
apc1 

(76/189) 
40%  
van 

(65/216) 
30% 

m60- 
26.7% 
apc1- 

25.2% 
tank1- 
20.4% 

van- 18% 

tank1-
71%; 
apc1-54%; 
m60-63%; 
van-59%; 
apc1-54% 

tank1-86%; 
apc1-84%; 
m60-86%; 
van-74%; 
apc-72%

30 L19_18 260 2 tank1, m60 0.0078 tank1 
60% m60  

98%

tank1 
52.99% 

m60 90%

tank1 
(54/260) 

21%  
m60  

(12/12) 
100%

tank1- 
18.37% 

tank1 - 
60%; m60-
100% 

tank1 - 
48%; m60-

100%

31 L19_NS 275 3 m60, 
mantruck, 

tank1

0.0509 different 
objects 
78.6%

m60-
63.79% 

mantruck
-62.6% 
tank1-

77.51%

m60 
(40/50) 

80% 
mantruck 
(117/137) 

85%  
tank1 

(41/99)41
%

m60- 
50.24% 

mantruck
- 37.13% 

tank1- 
32.8% 

m60-80%; 
mantruck-
85%; 
tank1-78%

m60-91%; 
mantruck-

62%; tank1-
68%

32 L20_04 368 1 apc1 0.0039 apc1-
87%

apc1-
83%

apc1-
100%

apc1- 
26.35% 

apc1-
100% 

apc1-66%

33 L20_08 348 1 apc1 0.0121 apc1 
60.81%

apc1-
44.8%

no object apc1- 
11.49% 

apc1-61% apc1-32%

34 L20_17 308 1 tank1 0.0108 tank1-
100%

tank1-
96.3%

no object tank1- 
23.43% 

tank1-
100% 

tank1-66%

35 L20_18 448 1 tank1 0.0034 tank1- 
100%

tank1-
85%

72% tank1- 
25.66% 

tank1-
100% 

tank1-59%

36 L20_20 420 2 tank1, 
target

0.0037 target-
72%

no gt 
data

no gt 
data

no GT 
data 

no GT to 
compare 

no GT to 
compare
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37 L21_04 760 2 bradely, 
tank1

0.0087 follows 
the gt 

data 
100%

bradely-
17.55% 

tank1-
88.5%

bradely 
(44/321) 

14%  
tank1 

(481/746) 
65%

bradely- 
1.4%  

tank1-0% 

bradely-
18%; 
tank1-89%

bradely-
35%; tank1-

89%

38 L21_15 738 1 bradely 0.0105 bradely-
98.8%

bradely-
93.76%

hard to 
see 

object

bradely- 
21% 

bradely-
98% 

bradely-
89%

39 L21_17 360 1 apc1 0.0087 apc1-
96.11%

apc1-
94.44%

apc1-
100%

apc1- 
47.77% 

apc1-
100% 

apc1-74%

40 L22_06 348 1 tank1 0.0237 tank1-
47.42%

tank1-
17%

tank1-
77%

tank1- 
45.4% 

tank1-77% tank1-36%

41 L22_08 380 1 apc1 0.0219 apc1-
98.1%

apc1-
93%

apc1 -
100%

apc1- 
67.1% 

apc1-
100% 

apc1-100%

42 L22_10 398   x no Gt 
data

no Gt 
data

no Gt 
data

no GT 
data 

no GT 
data

no GT data

43 L22_14 350 2 m60, 
target

0.0221 m60-
54.18%  
target-

43%

target -
26.31% 

m60-
48.175%

m60 
(112/273) 

41%  
target 

(75/75) 
100%

m60- 
12.68% 
target- 

14.86% 

m60-54%; 
target-
100% 

m60-42%; 
target-100%

44 L23_12 368 1 apc1 0.0071 apc1-
82.1%

apc1-
89.4%

apc1-
100%

apc1- 
82.88% 

apc1-
100% 

apc1-87%

45 M14_06 380 1 bradely 0.0121 bradely-
53.23%

bradely-
61.49%

bradley-
100%

bradely- 
36% 

bradely-
100% 

bradely-
100%

46 M14_07 400 1 bradely 0.0125 bradely-
66.84%

bradely-
57.43%

breadely 
100%

bradely- 
21.42% 

breadely-
100% 

breadely-
100%

47 M14_10 498 2 tank1, 
mantruck

0.0236 tank1-
68.1%

tank1-
73.8% 

mantruck
-57.14%

tank1-
40% 

mantruck
-50%

tank1- 
66.93% 

tank1-
74%; 
mantruck-
57% 

tank1-
100%; 

mantruck-
99%

48 M14_13 380 1 mantruck 0.0147 mantruck
-51.89%

mantruck
-76.34%

mantruck 
-30%

mantruck
- 27.36% 

mantruck-
76% 

mantruck-
76%

49 L14_15 281 1 mantruck 0.0127 mantruck
-76.16%

mantruck
-83.6%

mantruck
-100%

mantruck
- 52.44% 

mantruck-
76% 

mantruck-
76%

50 M14_15 528 2 mantruck, 
target

0.0132 target-
38% 

mantruck
-56.37% 

target-0%

mantruck 
(35/380)  

9%  
target 

(20/20) 
100%

mantruck
- 45.24% 

mantruck-
56%; 
target-
100% 

mantruck-
53%; target-

84%

 

5. Conclusion 

In this work, we first propose an image pre-processing and segmentation algorithm to remove 
most of the background noise and clutter from IR image dataset. We then introduce four novel 
algorithms and an elegant mathematical technique to detect and track the objects of interest. We 
also introduce techniques for building the tracking box to capture the image of interest and 
extraction of the features for classification once the target is detected. The proposed algorithms 
have been used on different image sequences in the IR database, and the resulting image 
detection and tracking performance has been summarized extensively. Our single object-based 
algorithm exploits the image correlation statistics for tracking the most dominant object in the 
frame. Based on the knowledge of the histogram, we have extended our algorithm to track 
multiple objects in a frame. In the unlikely but possible event when two objects contain same 
intensity, our tracking algorithm may track one object or the other object at a time. Further, if the 
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similar intensities are present in the background as well as in dominant object, intensities of 
object may be lost due to the pre-processing, and, hence it is never tracked. For an example, for 
L18_16, even though we observe only one window for tracking, it corresponds to more than one 
object, and the random placement of the window is due to the existence of highest frequency 
component randomly occurring in the frame. Thus, it appears that the same window is tracking 
different objects. 

As mentioned above, we do not assume any prior knowledge of the target in our Intesity, 
Correlation_time and Correlation_frequency algorithms while we assume full knowledge of 
target location in our Bayesian algorithms using the GT data. Off course, we pay a price for this 
uncertainty of knowledge of the target in our first three algorithms- i.e., we obtain relatively poor 
performance as evidenced in the performance metrics summary results. Thus, we detect and 
track background sometimes in the first three algorithms. Note that in Intensity algorithm we 
detect and track one target at a time while in Correlation_time algorithm, we detect and track two 
dominant intensity targets at a time. At this time, this appears to be a reasonable limit of our 
image preprocessing and segmentation function that retains only enough intensity information of 
two targets at a time. However, in all cases, when we detect and track any target, we verify its 
accuracy using GT data automatically. 

For the mathematical technique development, we explore the wavelets in the 
determination of the exact angle of rotation between the images. We compare the performance of 
the Hilbert transform only and Hilbert wavelet transform in the determination of the exact angle 
of rotation between the images. Note that this Hilbert-wavelet analysis is performed as part of 
our other ongoing research in the relevant areas. Further, to enhance the speed of operation as 
well as data reduction, we have developed a zonal mask that discards up to 50% of the 
insignificant transformed coefficients while retaining most of the information. In the 
determination of in-plane rotation, the performance of the Hilbert wavelet and the Hilbert 
transform is comparable. However, for the out-of-plane rotation case, Hilbert wavelet offers 
improved performance with a less number of false alarms. Detection and tracking performance 
with Hilbert transform and Hilbert wavelet are the same except the fact that Hilbert wavelet 
offers greater correlation value and thereby improve tracking. Further, we have developed very 
flexible GUI that allows for integration for not our algorithms, by also additional relevant 
algorithms quite easily. This GUI may be instrumental in automated comparison and decision 
fusion of algorithms for better target detection and tracking.  

We take advantage of our novel pre-processing, detection and tracking algorithms in 
discarding unwanted frames in a sequence of images. This improves the subsequent 
classification performance of our classifier. We perform block processing on the remaining pre-
processed and noiseless frames and extract various statistical intensity features such as the mean, 
variance, minimum and maximum intensity values of the image from every block and use them 
as feature vectors for classification. We propose an algorithm to extract shape features of the 
object based on the clean edges of an image. We have proposed an edge-tracing algorithm to 
trace the coordinates of the edge points of the image. We render the edges invariant by shifting 
them to the centroid of the image. We sample it to have edges of the order of powers of 2. We 
take the first few DCT coefficients to represent the shape and make them invariant to scale. 
Finally, we use the reduced number of shape-related DCT coefficients as the input for 
classification.  

We use self-organizing maps (SOM) as the classification algorithm as we consider the 
data to be unlabeled. The usage of SOM classification offers a reasonable number of clusters 
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(average of 7 or 8) for 400 frames for an example sequence from image database. In addition, 
detection and classification of infrared images is performed using the Bayesian conditional 
probability algorithm and K- nearest neighbor (NN) classifier. We also investigate the sensitivity 
of the algorithm to different parametric variations. Various examples illustrating the limitation 
have been shown. From the results, it is clear that the statistical features offer better classification 
results. However, we must emphasize that in order to obtain a reasonably accurate classification 
of data, we require robust reference (example) images for training and target class identification. 
The current dataset provided by AMCOM do not contain such ‘pristine’ reference targets. Thus, 
all these classification results in this report are intended to demonstrate the possible directions in 
the event if such reference images are available. 
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Executive summary 
This report summarizes the work performed at Wright State University. The Quality Metric 
Scene Evaluator (QMSE), a front end GUI and the search engine that was implemented earlier 
during this project was used to process the data. Trying to visually determining data quality is 
misleading1, therefore, the ATR performance comparison is measured with the quantitative 
knowledge provided by the ground truth data provided. Visual inspection on the other hand can 
provide insight while debugging and improving algorithms.  
 
The search engine design allows for easy plug in of multiple search methods. Therefore, scenes 
can be evaluated based upon the performance of different matching algorithms. The key idea of 
this search method is to take advantage of the "divide and conquer" concept. Instead of searching 
for a pattern in a large image, a smart approach is taken to divide the image space into 
overlapping pattern of sub-images. Search is then based on upon best match with sub-image. The 
QMSE uses the Ground Truth Data (GTD), supplied by ARO, to compare actual target location 
to the location determined by the tracker.  
 
 
Introduction 

This report is the final report from Wright State University on the ARO project. Progress made 
during the last trimester of 2003 is discussed. The direction of the project at Wright State 
University shifted by the year-end 2002, from one exploring and designing platform to evaluate 
different search algorithms, to the one of actually developing framework for performing 
experiments. ARO provided files containing Ground Truth data information to aid in this effort. 
 
Quality Metric Scene Evaluator (QMSE) 

During second quarter a Graphical User Interface (GUI) was developed to ease the task of 
evaluating different scenes, using different algorithms. This is the front end of the search engine 
designed and developed at WSU earlier to evaluate images. Still only a phase only filter is 
available to track objects in the scenes, but with two different algorithms to define area of 
interest. However, the search engine design allows for easy plug in of other search methods. 
Therefore, scenes can be evaluated based upon the performance of different search algorithms.  
 
The key idea of this framework is to take advantage of the "divide and concur" concept. Instead 
of searching for a pattern in a large image, a smart approach is taken to divide the image space 
into overlapping pattern of sub-images. Search is then based upon best match of input target with 
sub-image. Adaptive algorithm using POF was designed for this purpose during the first phase. 
The algorithm takes target sub-image of previous scene as the search pattern for the next scene.  
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The search engine framework is capable of dividing image space into sub-images of 64x64, 
32x32, 16x16, and 8x8 pixels. This feature allows experimenter to evaluate susceptibility of 
different search algorithm to the speed of target, background noise, frame losses and other 
performance issues of image quality. 
 
Data Analysis 

To facilitate automatic processing of the scenes, an extensive analysis of the ground truth data 
was needed. During the first attempt processing the data (spring and summer quarter) only the 
first target in each scene was tracked. During that phase it came apparent that the complexity of 
the different scenes and the variety of data format in the ground truth files opposed a problem 
during processing. The vast number of ground truth data files (approximately 20k files) and the 
variety of situations in the scenes made this a challenging task. In order to understand the 
underlying requirements for the search engine program, a Matlab program was written to 
generate data file which then was imported into spreadsheet program for analysis. From the fifty 
sequences less than half had only one target present. One sequence had five targets present in the 
scene at one time although all in all there were more than five targets in the scene at different 
times Figure 1.  
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Figure 1 Number of targets at one time in a sequence 

 
The following charts, figures 2 through 8, illustrate the wide variety of scenes encountered in the 
sequences. Sequence L1415 belongs to the simplest of data. Only one target present from the 
beginning to the end, starting in frame one. 
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Figure 2 Simple sequence 

Figure 2, represents one of the simplest sequences. Another simple sequence follows in figure 3. 
Sequence L1520 is still a sequence of only one target, but the ground truth data not available for 
the first 44 files.  
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Figure 3 Little more complex data 

Still the complexity increases, or the variety of processing requirements. In figure 4 sequence 
L15NS we have a sequence that starts out with a one target and then reduces to only one target 
and stays there for the reminder of the sequence. 
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Figure 4 Still increasing complexity 

Some sequences have variable number of target present over the course of the scene but are still 
relatively easy to process automatically, see figure 5. 
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Figure 5 Still relatively simple to process 

But the complexity in automatic processing increases as the variety of the format increases. Few 
of the more difficult sequences follow.  
 



 58

L1805

0

0.5

1

1.5

2

2.5

3

3.5

0 100 200 300 400 500 600 700 800 900

Frame

Ta
rg

et
(s

)

 
Figure 6 Number of targets in the scene changes multiple times 

Sequence L1702 is one of the more challenging sequences counting seven different targets 
although there are maximum three visible at any given time. 
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Figure 7 Missing initial ground truth data and varying number of targets 
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Figure 8 Missing ground truth data (target) in the middle of a sequence 

A complete set of ground truth data tables and graphs is provided in the appendix. Due to the 
variety of the data a database was constructed including all the given ground truth data. Using 
this database, a lookup table is created for bookkeeping of the targets in each scene. Moreover, 
the multiple mat-files for each sequence were combined into one file per sequence. 
 
 
Scene Evaluation  

Using the Phase Only Filter (POF) two experiments were run on all the image sequences. One 
experiment uses Gaussian weighting function and the other experiment uses a distance function 
to define the region of interest. The functionality and operator instructions for the QMSE can be 
found in the June 2003 report as well as in the appendix of this report. Trying to visually 
determining data quality is misleading1, therefore, the ATR performance is measured only with 
the quantitative knowledge gained from the ground truth data provided. Visual inspection on the 
other hand can provide insight while debugging and improving the algorithms.  
 
The QMSE reads data from the Ground Truth Data-base and uses this data to compare actual 
target location to the location determined by the tracker. The QMSE pumps out information to 
the user interface and to a text file regarding the tracking progress. If the target moves out of the 
tracking gate an error message is displayed and this data is used to calculate the success rate. The 
success rate is determined by: 
 

framesofnumber
misseSuccessRat

__
100−=  
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It should be noted that the variable number_of_frames is not equal to the number of frames in the 
sequence. The variable refers to the number of frames were the target is present according to the 
ground truth data files. 
 
The first time a target appears the ground truth data is used to obtain the reference target. This is 
the only time ground truth data is used to provide tracking data for the algorithm. Following this 
initial extraction of the target the ground truth data provides quantitative data to measure the 
performance of the algorithm.  
 
It is relatively easy to add different search algorithms, weighting functions and preprocessing 
functionality to the QMSE. The user interface provides the entry hook and the function (search 
algorithm) can be added as a new separate “m” file to the project. A switch statement would be 
needed in the main loop to accommodate multiple search algorithms. Pre processing would be 
added in the outer loop right after the “mat” file containing the sequence is opened. 
 
Some experimentation with the weighting function might provide improved performance. 
However, tweaking of the weighting function requires the entire data set to be evaluated each 
time to avoid tailoring the function to certain scenes or targets. 
 
When working with multiple targets the QMSE displays a number next to the gate (sub-image). 
This number refers to the target that is being tracked. The name of the target is presented in the 
Ground truth data area. For example: if there are three active targets, tank, truck, and Bradley 
appearing in this order in the ground truth data file. While tracking the tank a number “1” will be 
displayed next to the gate. While tracking the truck a “2” will be displayed and so on. Rather 
than running the same sequence multiple times when tracking multiple targets, the tracker 
multiplexes the targets. This method makes it easy to analyze and understand why the algorithm 
fails. In some cases where the targets are initially very close to each other the algorithm can fail 
to track the correct target when the targets separate. 
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Figure 9 QMSE  Gate Labeling 

 
In the case of two targets close together, we can have four general situations: 
 

1. The algorithm correctly tracks both targets  
2. The algorithm tracks the same target twice 
3. The tracker assigned initially to target one actually tracks target number two and the 

tracker assigned to target two tracks target number one. 
4. Not tracking at all, lost.  
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Figure 10 QMSE Gate label 

 
Of course this problem compounds when the number of targets increases. 
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Processing the scene 

Sub-Imaging 

An image can be represented by the following set: 
 

  },.....,{Im 128,1282,11,1 ppp=  (1) 

Similarly the target can be represented by the set: 

  },...,{ maxmax,2,11,1 tttT =  (2) 

We know that target T is embedded in the scene Im since T is a proper subset of Im: 

  Im∈T  (3) 

This leads to one task only; the task of finding the subset of Im (sub-image) containing the target 
T. Such that: 

  ImIm⊆∈ST  (4) 

To focus on features rather than the energy of the image we must establish a reference value. 

Sub-imaging and comparing can select the best match as being: 

  ImIm⊆≈ ST  (5) 

Therefore, the search algorithm is precisely as follows: 

   TTTSTSTS ⊗≈⊗⊗∃⊗∀ Im|Im,Im  (6) 

This search algorithm truly eliminates the effect of high-energy pixels, and the POF searches for 
the best matching features. This algorithm can be stated as: For all sub-images convolved with 
target image, there must exist sub-image convolved with target image such that sub-image 
convolved with target image is approximately same as target image convolved with target image. 
So the task on hand is to find the cross correlation of sub-image with target image that is closest 
in magnitude to the autocorrelation of the target image. 
 A simple checkerboard sub-imaging is not sufficient to produce reliable results. A more 
sophisticated approach must be taken in order to preserve information between scenes. Figure 11 
shows one such approach. Sub-images are created in overlapping fashion.  
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Figure 11 Sub-image grid 

 
One of the most important parameters, to be considered when selecting granularity of the sub-
imaging, is the size of the target. The smaller the target the smaller the sub-image must be. 
However, to ensure maximum detection capability the target size needs to be ¼ of the sub-image 
size. If the sub-image is smaller than the target a maximum pattern matching will not be 
achieved due to clipping. If the sub-image on the other hand is bigger than the target some of the 
background will be included, and the edge detection weight of the POF might be overcome by 
the weight of the energy summed up by the integration2.  
 
Algorithm 

Figure 11 describes the adaptive POF ATR system. A target is extracted at its first appearance in 
the input image. The target along with the image frame is passed on to the POF ATR system. 
The POF ATR System consists of four main modules: The module extracting sub-images from 
the input image, auto-correlator module to establish the reference value for match, correlator 
module which correlates each sub-image to the input target, and finally a selector module to 
select the target sub-image. In this research we have provided results from selector module using 
two different weighting functions. One is based on the Gaussian weight, and the other method is 
based on actual distance from the center of target area. The selector feeds back the new target to 
the auto-correlator module to update the input target, and to the output for displaying. Next it 
updates the target and feeds it back to the auto-correlator to be used as an input filter for the next 
image frame. Finally it passes information on to the output module to display the tracking 
results. 
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Figure 12 POF Tracking System 

The ATR algorithm performance is clearly directly related to the target signature and the clutter 
of the scene3. Providing the two different weighting methods for the selector module clearly 
shows this. 
 
Results 

All 102 targets were tracked automatically and evaluated based on the ground truth data provided 
by ARO for two different weighting functions. The results are provided in tables 1 and 2. Figure 
13 compares the two weighting functions. 
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Figure 13 Performance comparison of Gaussian vs. Distance weight function 

Following table shows the results from tracking the targets using weighting function based on the 
Gaussian distribution. In the tables 1 and 2, the values of min, mean, max, and std represent the 
average values over the sequence. The miss value reflects the total number of frames missed 
while tracking, irrespective of the location of the frame in the sequence. 
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Table 1 Results with Gaussian weighting function. 

Sequence# min mean max std target misses # of scenes rate 
./Lwir/L14_15/L14_15 91 133.92 244 3.34 Mantruck  0 280 100.00
./Lwir/L15_20/L15_20 85 132.25 231 2.95 tank1  95 170 44.12
./Lwir/L15_NS/L15_NS 84 142.20 225 2.37 tank1 302 319 5.33
./Lwir/L15_NS/L15_NS 84 142.20 225 2.37 truck  2 21 90.48
./Lwir/L16_04/L16_04 83 154.87 249 2.85 tank1  396 399 0.75
./Lwir/L16_07/L16_07 81 140.98 251 2.86 tank1  185 210 11.90
./Lwir/L16_07/L16_07 81 140.98 251 2.86 tank1  0 188 100.00
./Lwir/L16_07/L16_07 81 140.98 251 2.86 tank1  0 10 100.00
./Lwir/L16_08/L16_08 47 111.72 255 4.24 M60  42 289 85.47
./Lwir/L16_08/L16_08 47 111.72 255 4.24 apc1 0 81 100.00
./Lwir/L16_08/L16_08 47 111.72 255 4.24 mantrk? 44 100 56.00
./Lwir/L16_18/L16_18 37 124.18 251 4.57 apc1  264 290 8.97
./Lwir/L16_18/L16_18 37 124.18 251 4.57 M60  0 101 100.00
./Lwir/L16_18/L16_18 37 124.18 251 4.57 truck  0 6 100.00
./Lwir/L17_01/L17_01 50 127.49 220 2.26 Bradley? 0 370 100.00
./Lwir/L17_01/L17_01 50 127.49 220 2.26 pickup(trk)?  12 43 72.09
./Lwir/L17_02/L17_02 55 147.29 229 2.09 Mantruck? 32 100 68.00
./Lwir/L17_02/L17_02 55 147.29 229 2.09 pickup(trk)? 0 32 100.00
./Lwir/L17_02/L17_02 55 147.29 229 2.09 Bradley? 325 340 4.41
./Lwir/L17_02/L17_02 55 147.29 229 2.09 Mantruck?  158 418 62.20
./Lwir/L17_02/L17_02 55 147.29 229 2.09 tank 16 48 66.67
./Lwir/L17_20/L17_20 44 126.33 240 7.87 target 34 35 2.86
./Lwir/L17_20/L17_20 44 126.33 240 7.87 M60 591 734 19.48
./Lwir/L18_03/L18_03 38 117.98 226 4.87 Bradley 389 446 12.78
./Lwir/L18_05/L18_05 67 163.61 248 6.32 tank1  605 747 19.01
./Lwir/L18_05/L18_05 67 163.61 248 6.32 apc1  44 135 67.41
./Lwir/L18_05/L18_05 67 163.61 248 6.32 M60  104 159 34.59
./Lwir/L18_05/L18_05 67 163.61 248 6.32 tank  8 9 11.11
./Lwir/L18_07/L18_07 66 156.13 241 6.20 Bradley  241 259 6.95
./Lwir/L18_12/L18_12 51 142.46 231 5.64 Bradley 94 299 68.56
./Lwir/L18_12/L18_12 51 142.46 231 5.64 tank1  167 198 15.66
./Lwir/L18_12/L18_12 51 142.46 231 5.64 M60  0 92 100.00
./Lwir/L18_13/L18_13 55 143.89 235 5.52 tank1 292 325 10.15
./Lwir/L18_13/L18_13 55 143.89 235 5.52 M60  0 228 100.00
./Lwir/L18_13/L18_13 55 143.89 235 5.52 apc1 0 168 100.00
./Lwir/L18_15/Seq1/L18_15 54 142.57 250 5.59 M60  0 242 100.00
./Lwir/L18_15/Seq1/L18_15 54 142.57 250 5.59 truck?  0 12 100.00
./Lwir/L18_15/Seq1/L18_15 54 142.57 250 5.59 tank1  262 288 9.03
./Lwir/L18_15/Seq1/L18_15 54 142.57 250 5.59 bradley  22 192 88.54
./Lwir/L18_15/Seq2/L18_15 49 139.27 227 5.43 M60  206 237 13.08
./Lwir/L18_15/Seq2/L18_15 49 139.27 227 5.43 tank1  265 306 13.40
./Lwir/L18_15/Seq2/L18_15 49 139.27 227 5.43 bradley 88 186 52.69
./Lwir/L18_16/L18_16 48 142.48 243 5.93 tank1 300 327 8.26
./Lwir/L18_16/L18_16 48 142.48 243 5.93 M60 0 289 100.00
./Lwir/L18_17/Seq1/L18_17 51 150.07 252 5.88 tank1  172 239 28.03
./Lwir/L18_17/Seq1/L18_17 51 150.07 252 5.88 M60 0 194 100.00
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./Lwir/L18_17/Seq2/L18_17 47 148.04 252 6.04 tank1  200 265 24.53

./Lwir/L18_17/Seq2/L18_17 47 148.04 252 6.04 M60  0 190 100.00

./Lwir/L18_18/L18_18 52 146.41 252 5.70 mantruck  43 45 4.44

./Lwir/L18_18/L18_18 52 146.41 252 5.70 target  1 4 75.00

./Lwir/L18_18/L18_18 52 146.41 252 5.70 apc1  52 92 43.48

./Lwir/L18_18/L18_18 52 146.41 252 5.70 M60? 114 122 6.56

./Lwir/L18_18/L18_18 52 146.41 252 5.70 tank1  203 213 4.69

./Lwir/L18_18/L18_18 52 146.41 252 5.70 testvan 0 3 100.00

./Lwir/L19_01/L19_01 54 143.46 252 5.90 tank1 210 239 12.13

./Lwir/L19_02/L19_02 53 143.93 252 5.88 tank1  201 269 25.28

./Lwir/L19_04/L19_04 43 140.32 252 6.74 tank1 186 269 30.86

./Lwir/L19_06/L19_06 55 149.00 252 5.35 tank1 234 264 11.36

./Lwir/L19_06/L19_06 55 149.00 252 5.35 apc1  202 264 23.48

./Lwir/L19_06/L19_06 55 149.00 252 5.35 Mantruck 0 205 100.00

./Lwir/L19_06/L19_06 55 149.00 252 5.35 Van  0 22 100.00

./Lwir/L19_07/L19_07 56 151.43 253 5.53 Mantruck  57 75 24.00

./Lwir/L19_10/L19_10 54 148.14 248 5.40 tank1  0 113 100.00

./Lwir/L19_10/L19_10 54 148.14 248 5.40 apc1  68 73 6.85

./Lwir/L19_11/L19_11 51 142.89 253 5.41 tank1  5 164 96.95

./Lwir/L19_11/L19_11 51 142.89 253 5.41 apc1  0 164 100.00

./Lwir/L19_13/L19_13 54 152.68 253 5.20 tank1  121 264 54.17

./Lwir/L19_13/L19_13 54 152.68 253 5.20 apc1  238 264 9.85

./Lwir/L19_13/L19_13 54 152.68 253 5.20 M60  0 66 100.00

./Lwir/L19_13/L19_13 54 152.68 253 5.20 Mantruck  1 12 91.67

./Lwir/L19_15/L19_15 39 140.70 255 5.10 tank1  306 321 4.67

./Lwir/L19_15/L19_15 39 140.70 255 5.10 apc1  3 190 98.42

./Lwir/L19_15/L19_15 39 140.70 255 5.10 M60  319 326 2.15

./Lwir/L19_15/L19_15 39 140.70 255 5.10 Van 19 210 90.95

./Lwir/L19_15/L19_15 39 140.70 255 5.10 apc1  9 12 25.00

./Lwir/L19_18/L19_18 41 144.89 252 4.74 tank1  141 233 39.48

./Lwir/L19_18/L19_18 41 144.89 252 4.74 M60? 0 12 100.00

./Lwir/L19_NS/L19_NS 38 140.73 252 4.78 M60?  5 58 91.38

./Lwir/L19_NS/L19_NS 38 140.73 252 4.78 mantruck  77 114 32.46

./Lwir/L19_NS/L19_NS 38 140.73 252 4.78 tank1  87 128 32.03

./Lwir/L20_04/L20_04 44 139.58 230 3.36 apc1  0 367 100.00

./Lwir/L20_08/L20_08 44 143.50 236 3.93 apc1  164 347 52.74

./Lwir/L20_17/L20_17 42 141.03 233 3.77 tank1  123 191 35.60

./Lwir/L20_18/L20_18 43 138.61 224 3.30 tank1  0 447 100.00

./Lwir/L20_20/L20_20 50 140.40 216 3.14 tank1 192 419 54.18

./Lwir/L20_20/L20_20 50 140.40 216 3.14 target  111 172 35.47

./Lwir/L21_04/L21_04 55 144.01 183 1.37 bradley  319 321 0.62

./Lwir/L21_04/L21_04 55 144.01 183 1.37 tank1 386 690 44.06

./Lwir/L21_15/L21_15 54 140.29 194 2.08 Bradley  731 737 0.81

./Lwir/L21_17/L21_17 54 136.28 196 2.04 apc1  0 359 100.00

./Lwir/L22_06/L22_06 51 139.39 211 2.52 tank1  0 347 100.00

./Lwir/L22_08/L22_08 45 130.85 212 2.98 apc1  0 379 100.00

./Lwir/L22_14/L22_14 47 134.95 209 2.71 M60  270 273 1.10

./Lwir/L22_14/L22_14 47 134.95 209 2.71 target  72 74 2.70
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./Lwir/L23_12/L23_12 49 134.09 216 2.46 apc1  0 367 100.00

./Mwir/M14_06/M14_06 35 141.62 216 2.44 Bradley  0 378 100.00

./Mwir/M14_07/M14_07 34 143.36 218 2.39 Bradley  0 399 100.00

./Mwir/M14_10/M14_10 25 125.03 228 3.71 tank1  0 497 100.00

./Mwir/M14_10/M14_10 25 125.03 228 3.71 Mantruck 14 77 81.82

./Mwir/M14_13/M14_13 25 126.70 228 4.04 Mantruck  0 379 100.00

./Mwir/M14_15/M14_15 25 138.22 228 3.00 Mantruck  513 523 1.91

./Mwir/M14_15/M14_15 25 138.22 228 3.00 target  11 19 42.11
 
The following bar graph summarizes the results using the Gaussian weighting function. 
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Figure 14 Results using Gaussian weighting function 

 
The results using the Distance weighting function follows in table 2. 
 

Table 2 Results using Distance weighting function. 

Sequence# min mean max std target misses # of scenes rate 
./Lwir/L14_15/L14_15 91 133.92 244 3.34 Mantruck  0 280 100.00
./Lwir/L15_20/L15_20 85 132.25 231 2.95 tank1  97 170 42.94
./Lwir/L15_NS/L15_NS 84 142.20 225 2.37 tank1 299 319 6.27
./Lwir/L15_NS/L15_NS 84 142.20 225 2.37 truck  1 21 95.24
./Lwir/L16_04/L16_04 83 154.87 249 2.85 tank1  396 399 0.75
./Lwir/L16_07/L16_07 81 140.98 251 2.86 tank1  192 210 8.57
./Lwir/L16_07/L16_07 81 140.98 251 2.86 tank1  0 188 100.00
./Lwir/L16_07/L16_07 81 140.98 251 2.86 tank1  0 10 100.00
./Lwir/L16_08/L16_08 47 111.72 255 4.24 M60  46 289 84.08
./Lwir/L16_08/L16_08 47 111.72 255 4.24 apc1 0 81 100.00
./Lwir/L16_08/L16_08 47 111.72 255 4.24 mantrk? 45 100 55.00
./Lwir/L16_18/L16_18 37 124.18 251 4.57 apc1  265 290 8.62
./Lwir/L16_18/L16_18 37 124.18 251 4.57 M60  0 101 100.00
./Lwir/L16_18/L16_18 37 124.18 251 4.57 truck  0 6 100.00



 69

./Lwir/L17_01/L17_01 50 127.49 220 2.26 Bradley? 0 370 100.00

./Lwir/L17_01/L17_01 50 127.49 220 2.26 pickup(trk)?  12 43 72.09

./Lwir/L17_02/L17_02 55 147.29 229 2.09 Mantruck? 32 100 68.00

./Lwir/L17_02/L17_02 55 147.29 229 2.09 pickup(trk)? 0 32 100.00

./Lwir/L17_02/L17_02 55 147.29 229 2.09 Bradley? 327 340 3.82

./Lwir/L17_02/L17_02 55 147.29 229 2.09 Mantruck?  416 418 0.48

./Lwir/L17_02/L17_02 55 147.29 229 2.09 tank 34 48 29.17

./Lwir/L17_20/L17_20 44 126.33 240 7.87 target 34 35 2.86

./Lwir/L17_20/L17_20 44 126.33 240 7.87 M60 719 734 2.04

./Lwir/L18_03/L18_03 38 117.98 226 4.87 Bradley 395 446 11.43

./Lwir/L18_05/L18_05 67 163.61 248 6.32 tank1  680 747 8.97

./Lwir/L18_05/L18_05 67 163.61 248 6.32 apc1  44 135 67.41

./Lwir/L18_05/L18_05 67 163.61 248 6.32 M60  128 159 19.50

./Lwir/L18_05/L18_05 67 163.61 248 6.32 tank  8 9 11.11

./Lwir/L18_07/L18_07 66 156.13 241 6.20 Bradley  241 259 6.95

./Lwir/L18_12/L18_12 51 142.46 231 5.64 Bradley 2 299 99.33

./Lwir/L18_12/L18_12 51 142.46 231 5.64 tank1  169 198 14.65

./Lwir/L18_12/L18_12 51 142.46 231 5.64 M60  0 92 100.00

./Lwir/L18_13/L18_13 55 143.89 235 5.52 tank1 292 325 10.15

./Lwir/L18_13/L18_13 55 143.89 235 5.52 M60  0 228 100.00

./Lwir/L18_13/L18_13 55 143.89 235 5.52 apc1 0 168 100.00

./Lwir/L18_15/Seq1/L18_15 54 142.57 250 5.59 M60  187 242 22.73

./Lwir/L18_15/Seq1/L18_15 54 142.57 250 5.59 truck?  0 12 100.00

./Lwir/L18_15/Seq1/L18_15 54 142.57 250 5.59 tank1  261 288 9.38

./Lwir/L18_15/Seq1/L18_15 54 142.57 250 5.59 bradley  79 192 58.85

./Lwir/L18_15/Seq2/L18_15 49 139.27 227 5.43 M60  199 237 16.03

./Lwir/L18_15/Seq2/L18_15 49 139.27 227 5.43 tank1  263 306 14.05

./Lwir/L18_15/Seq2/L18_15 49 139.27 227 5.43 bradley 91 186 51.08

./Lwir/L18_16/L18_16 48 142.48 243 5.93 tank1 314 327 3.98

./Lwir/L18_16/L18_16 48 142.48 243 5.93 M60 0 289 100.00

./Lwir/L18_17/Seq1/L18_17 51 150.07 252 5.88 tank1  168 239 29.71

./Lwir/L18_17/Seq1/L18_17 51 150.07 252 5.88 M60 0 194 100.00

./Lwir/L18_17/Seq2/L18_17 47 148.04 252 6.04 tank1  204 265 23.02

./Lwir/L18_17/Seq2/L18_17 47 148.04 252 6.04 M60  0 190 100.00

./Lwir/L18_18/L18_18 52 146.41 252 5.70 mantruck  41 45 8.89

./Lwir/L18_18/L18_18 52 146.41 252 5.70 target  2 4 50.00

./Lwir/L18_18/L18_18 52 146.41 252 5.70 apc1  71 92 22.83

./Lwir/L18_18/L18_18 52 146.41 252 5.70 M60? 114 122 6.56

./Lwir/L18_18/L18_18 52 146.41 252 5.70 tank1  199 213 6.57

./Lwir/L18_18/L18_18 52 146.41 252 5.70 testvan 0 3 100.00

./Lwir/L19_01/L19_01 54 143.46 252 5.90 tank1 195 239 18.41

./Lwir/L19_02/L19_02 53 143.93 252 5.88 tank1  230 269 14.50

./Lwir/L19_04/L19_04 43 140.32 252 6.74 tank1 182 269 32.34

./Lwir/L19_06/L19_06 55 149.00 252 5.35 tank1 233 264 11.74

./Lwir/L19_06/L19_06 55 149.00 252 5.35 apc1  202 264 23.48

./Lwir/L19_06/L19_06 55 149.00 252 5.35 Mantruck 0 205 100.00

./Lwir/L19_06/L19_06 55 149.00 252 5.35 Van  0 22 100.00

./Lwir/L19_07/L19_07 56 151.43 253 5.53 Mantruck  50 75 33.33
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./Lwir/L19_10/L19_10 54 148.14 248 5.40 tank1  0 113 100.00

./Lwir/L19_10/L19_10 54 148.14 248 5.40 apc1  0 73 100.00

./Lwir/L19_11/L19_11 51 142.89 253 5.41 tank1  0 164 100.00

./Lwir/L19_11/L19_11 51 142.89 253 5.41 apc1  0 164 100.00

./Lwir/L19_13/L19_13 54 152.68 253 5.20 tank1  118 264 55.30

./Lwir/L19_13/L19_13 54 152.68 253 5.20 apc1  261 264 1.14

./Lwir/L19_13/L19_13 54 152.68 253 5.20 M60  1 66 98.48

./Lwir/L19_13/L19_13 54 152.68 253 5.20 Mantruck  1 12 91.67

./Lwir/L19_15/L19_15 39 140.70 255 5.10 tank1  303 321 5.61

./Lwir/L19_15/L19_15 39 140.70 255 5.10 apc1  3 190 98.42

./Lwir/L19_15/L19_15 39 140.70 255 5.10 M60  319 326 2.15

./Lwir/L19_15/L19_15 39 140.70 255 5.10 Van 23 210 89.05

./Lwir/L19_15/L19_15 39 140.70 255 5.10 apc1  9 12 25.00

./Lwir/L19_18/L19_18 41 144.89 252 4.74 tank1  26 233 88.84

./Lwir/L19_18/L19_18 41 144.89 252 4.74 M60? 0 12 100.00

./Lwir/L19_NS/L19_NS 38 140.73 252 4.78 M60?  3 58 94.83

./Lwir/L19_NS/L19_NS 38 140.73 252 4.78 mantruck  100 114 12.28

./Lwir/L19_NS/L19_NS 38 140.73 252 4.78 tank1  87 128 32.03

./Lwir/L20_04/L20_04 44 139.58 230 3.36 apc1  0 367 100.00

./Lwir/L20_08/L20_08 44 143.50 236 3.93 apc1  150 347 56.77

./Lwir/L20_17/L20_17 42 141.03 233 3.77 tank1  118 191 38.22

./Lwir/L20_18/L20_18 43 138.61 224 3.30 tank1  0 447 100.00

./Lwir/L20_20/L20_20 50 140.40 216 3.14 tank1 225 419 46.30

./Lwir/L20_20/L20_20 50 140.40 216 3.14 target  138 172 19.77

./Lwir/L21_04/L21_04 55 144.01 183 1.37 bradley  319 321 0.62

./Lwir/L21_04/L21_04 55 144.01 183 1.37 tank1 385 690 44.20

./Lwir/L21_15/L21_15 54 140.29 194 2.08 Bradley  694 737 5.83

./Lwir/L21_17/L21_17 54 136.28 196 2.04 apc1  0 359 100.00

./Lwir/L22_06/L22_06 51 139.39 211 2.52 tank1  0 347 100.00

./Lwir/L22_08/L22_08 45 130.85 212 2.98 apc1  0 379 100.00

./Lwir/L22_14/L22_14 47 134.95 209 2.71 M60  270 273 1.10

./Lwir/L22_14/L22_14 47 134.95 209 2.71 target  72 74 2.70

./Lwir/L23_12/L23_12 49 134.09 216 2.46 apc1  0 367 100.00

./Mwir/M14_06/M14_06 35 141.62 216 2.44 Bradley  0 378 100.00

./Mwir/M14_07/M14_07 34 143.36 218 2.39 Bradley  0 399 100.00

./Mwir/M14_10/M14_10 25 125.03 228 3.71 tank1  1 497 99.80

./Mwir/M14_10/M14_10 25 125.03 228 3.71 Mantruck 14 77 81.82

./Mwir/M14_13/M14_13 25 126.70 228 4.04 Mantruck  0 379 100.00

./Mwir/M14_15/M14_15 25 138.22 228 3.00 Mantruck  513 523 1.91

./Mwir/M14_15/M14_15 25 138.22 228 3.00 target  11 19 42.11
 
The following bar graph summarizes the results using the Distance weighting function. 
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Distance weighting function
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Figure 15 Results using Distance weighting function 

 
Conclusions 

In this report we have discussed the status of the ARO project at WSU. A multi-target tracking 
version of the “Quality Metric Scene Evaluator” (QMSE) has been developed using the Matlab 
programming tools. Using the QMSE we have evaluated the entire data set supplied by the Army 
Research Office twice using the Phase Only Filter in combination with two different weighting 
functions, Gaussian function and distance function. The QMSE uses sub-imaging technique. The 
sub-imaging technique shows very promising results when used in conjunction with the POF and 
a simple hot-spot filter. Using overlapping sub-images of relevant size transforms the task of 
tracking a target in a scene to the task of finding the best matching sub-image, which in turn has 
a fixed place in the scene. The critical parameter here is to select the sub-image size such as to 
maximize the target occupation in the sub-image. Future work in this area should include 
applying this technique to other ATR methods. Exploring methods of expanding and shrinking 
the grid size automatically based on target size also needs to be explored.  
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Figure 16 Comparison of Gaussian and Distance weighting function 

 
The QMSE reads data from the Ground Truth Data (GTD) files and uses this data to compare 
actual target location to the location determined by the tracker.  
 

Gaussian weighting performs better than distance weighting 

Distance weighting performs better than gaussian weighting 
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Appendix A 

Quality Metric Scene Evaluator 

The following figure shows the QMSE GUI. Various information about the images are 
displayed. The following list describes each item of the GUI. 
 

1.

2.

3.

4.

5.

6.

7.

8.

9.

14.

12.

11.

13.

10.

15.

16.

17.

18.

 
 
 

1. Button bar 
The button bar has five buttons. Only two have been implemented so far. Those are the 
Start button and the Stop button. The other three buttons are Pause, and buttons for 
Forward and Backwards stepping one frame at a time. 

2. Path 
The field below the button bar displays the relative path of the file currently being 
processed. 
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3. Tracking algorithm 

Pull down list to select different search algorithms to evaluate. 
4. Frame Delay 

The frame delay is to slow down or speed up the image processing. This can be handy 
when transitions between frames need to be examined without pausing the program. 

5. Threshold 
The threshold slider is not implemented for the POF. However, it is provide for 
algorithms that will need to have some variable parameter such as threshold/ 

6. Start File 
Next we have the start file pull down list. Any of the files provided can be selected to be 
the first file processed.  
NOTE: 
In later version a capability to process the files in backwards order will be provided. 

7. Stop File. 
The stop file pull down list serves is used to select the last file to process. 

8. Nearest neighbours 
The stem diagram shows the relationship between the absolute differences of the 
correlation between the sub-images in the region of interest. 

9. Ground Truth data display 
This image shows the sub-image that is according to the Ground Truth Data files 
supposed to contain the target. 

10. Ground Truth Data 
In this area alphanumerical information from the Ground Truth files are displayed. 

11. Preprocessing. 
This pull down list provides hook to plug in various preprocessing methods. At this time 
no preprocessing is provided. 

12. Weighting function 
The current POF algorithm can use either a Gaussian function to determine region of 
interest for the search algorithm or a plain distance function.  

13. Sub-image size. 
This pull down list allows the user to select which of 8x8, 16x16, 32x32, 64x64 sub-
image size to use for processing. 

14. Tracking Data. 
This area displays alphanumerical information from the tracking process. 

15. Scene Display. 
In this scene display the new target area is displayed in the current frame. 

16. Scene Display. 
Here the new target is displayed in the new frame. 

17. Target Display. 
In this target display the new target is displayed in the current frame. 

18. Target Display. 
Here the new target is displayed in the new frame. 
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